• Title/Summary/Keyword: performance characterization

Search Result 1,052, Processing Time 0.028 seconds

Experimental and Numerical Study of Heating Characteristics of Discontinuous Carbon Fiber-Epoxy Composites (불연속 탄소섬유-에폭시 복합재의 발열성능 평가)

  • Kim, Myungsoo;Kong, Kyungil;Kim, Nari;Park, Hyung Wook;Park, Ounyoung;Park, Young-Bin;Jung, Mooyoung;Lee, Sang Hwan;Kim, Su Gi
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.72-78
    • /
    • 2013
  • This study explores the resistive heating characteristics of discontinuous carbon fiber (CF)-epoxy composites. Test samples including 1, 3, and 5 wt.% CF were fabricated using sonication and cast molding processes. For heating performance characterization, DC currents were applied to the composite samples, and surface temperatures were evaluated visually and quantitatively using an infrared camera. To estimate the thermal performance of composites and verify the experimental results, finite element analyses were performed. The resistive heating mechanism was investigated in connection with CF loading and applied voltages. Resistive heating efficiency increased proportionately with CF concentration and applied voltage. To obtain homogeneous temperature distribution of the samples, high degree of CF dispersion is required.

Electrical Characterization of Amorphous Zn-Sn-O Transistors Deposited through RF-Sputtering

  • Choi, Jeong-Wan;Kim, Eui-Hyun;Kwon, Kyeong-Woo;Hwang, Jin-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.304.1-304.1
    • /
    • 2014
  • Flat-panel displays have been growing as an essential everyday product in the current information/communication ages in the unprecedented speed. The forward-coming applications require light-weightness, higher speed, higher resolution, and lower power consumption, along with the relevant cost. Such specifications demand for a new concept-based materials and applications, unlike Si-based technologies, such as amorphous Si and polycrystalline Si thin film transistors. Since the introduction of the first concept on the oxide-based thin film transistors by Hosono et al., amorphous oxide thin film transistors have been gaining academic/industrial interest, owing to the facile synthesis and reproducible processing despite of a couple of shortcomings. The current work places its main emphasis on the binary oxides composed of ZnO and SnO2. RF sputtering was applied to the fabrication of amorphous oxide thin film devices, in the form of bottom-gated structures involving highly-doped Si wafers as gate materials and thermal oxide (SiO2) as gate dielectrics. The physical/chemical features were characterized using atomic force microscopy for surface morphology, spectroscopic ellipsometry for optical parameters, X-ray diffraction for crystallinity, and X-ray photoelectron spectroscopy for identification of chemical states. The combined characterizations on Zn-Sn-O thin films are discussed in comparison with the device performance based on thin film transistors involving Zn-Sn-O thin films as channel materials, with the aim to optimizing high-performance thin film transistors.

  • PDF

Synthesis and Characterization of Electroluminescent Conjugated Polymers Containing Sulfone Group in the Main Chain (주사슬에 설폰기를 함유하는 전기발광 공액 고분자의 합성과 특성분석)

  • Kang Min Sung;Jung Ho Kuk;Park Soo Young;Kim Jang-Joo
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.357-362
    • /
    • 2005
  • As a new class of electroluminescent (EL) polymers, PPV-based polymers containing sulfone group in the main chain were synthesized through Witting polymerization reaction to control n-conjugation length and energy levels for predictable light emission and enhanced device performance. These EL polymers showed good solubility in common organic solvents and high thermal stability with initial decomposition temperature of ca. $400^{circ}$ and glass transition temperature around $200^{circ}C$ Emission colors were tuned from green to deep blue by reducing ${\pi}$-conjugated length between sulfone groups. It was also noted from the cyclic voltammetry (CV) measurements and semiempirical calculations that sulfone group with high electron affinity effectively lowered HOMO-LUMO energy levels to enhance EL device performance.

Characterization of Passive Direct Methanol Fuel Cells (수동형 직접 메탄올 연료전지의 특성 연구)

  • Kho, B.K.;Kim, Y.J.;Oh, I.H.;Hong, S.A.;Ha, H.Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.23-27
    • /
    • 2003
  • In this study investigations have been carried out for the evaluation of small DMFCS under passive operation conditions for use in portable powers. Under passive conditions, a maximum performance was obtained at a methanol concentration of 4 M and at a catalyst loading of $8mg/cm^2$ on both electrodes. By optimizing various parameters, we could achieve the highest performance of $55mW/cm^2$ at 1 attn and at R.T.A monopolar stack consisting of 6 unit cells with active area of $4.5cm^2/cell$ was prepared and it showed a uniform voltage distribution all over the cells and it had a power output of 1 watt and a power density of $37mW/cm^2$ A monopolar stack which consisted of 16 cells and produced a 2.4W power was also fabricated and was tested for operation of a miniature car.

The Materials Science of Chalcopyrite Materials for Solar Cell Applications

  • Rockett, Angus
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.53-53
    • /
    • 2011
  • This paper describes results for surface and bulk characterization of the most promising thin film solar cell material for high performance devices, (Ag,Cu) (In,Ga) Se2 (ACIGS). This material in particular exhibits a range of exotic behaviors. The surface and general materials science of the material also has direct implications for the operation of solar cells based upon it. Some of the techniques and results described will include scanning probe (AFM, STM, KPFM) measurements of epitaxial films of different surface orientations, photoelectron spectroscopy and inverse photoemission, Auger electron spectroscopy, and more. Bulk measurements are included as support for the surface measurements such as cathodoluminescence imaging around grain boundaries and showing surface recombination effects, and transmission electron microscopy to verify the surface growth behaviors to be equilibrium rather than kinetic phenomena. The results show that the polar close packed surface of CIGS is the lowest energy surface by far. This surface is expected to be reconstructed to eliminate the surface charge. However, the AgInSe2 compound has yielded excellent atomic-resolution images of the surface with no evidence of surface reconstruction. Similar imaging of CuInSe2 has proven more difficult and no atomic resolution images have been obtained, although current imaging tunneling spectroscopy images show electronic structure variations on the atomic scale. A discussion of the reasons why this may be the case is given. The surface composition and grain boundary compositions match the bulk chemistry exactly in as-grow films. However, the deposition of the heterojunction forming the device alters this chemistry, leading to a strongly n-type surface. This also directly explains unpinning of the Fermi level and the operation of the resulting devices when heterojunctions are formed with the CIGS. These results are linked to device performance through simulation of the characteristic operating behaviors of the cells using models developed in my laboratory.

  • PDF

Fabrication and Characterization of Thermal Battery using Porous MgO Separator Infiltrated with Li based Molten Salts

  • Kim, Kyungho;Lee, Sungmin;Im, Chae-Nam;Kang, Seung-Ho;Cheong, Hae-Won;Han, Yoonsoo
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.364-369
    • /
    • 2017
  • Ceramic powder, such as MgO, is added as a binder to prepare the green compacts of molten salts of an electrolyte for a thermal battery. Despite the addition of a binder, when the thickness of the electrolyte decreases to improve the battery performance, the problem with the unintentional short circuit between the anode and cathode still remains. To improve the current powder molding method, a new type of electrolyte separator with porous MgO preforms is prepared and characteristics of the thermal battery are evaluated. A Spherical PMMA polymer powder is added as a pore-forming agent in the MgO powder, and an organic binder is used to prepare slurry appropriate for tape casting. A porous MgO preform with $300{\mu}m$ thickness is prepared through a binder burnout and sintering process. The particle size of the starting MgO powder has an effect, not on the porosity of the porous MgO preform, but on the battery characteristics. The porosity of the porous MgO preforms is controlled from 60 to 75% using a pore-forming agent. The batteries prepared using various porosities of preforms show a performance equal to or higher than that of the pellet-shaped battery prepared by the conventional powder molding method.

Studies of Purification and Characterization of Epidermal Growth Factor from Human Colostrum (인유 중의 Epidermal Growth Factor 분리 및 특성에 관한 연구)

  • 신영하;양희진;양동훈;이수원
    • Food Science of Animal Resources
    • /
    • v.23 no.2
    • /
    • pp.155-160
    • /
    • 2003
  • The purpose of this study was to purify epidermal growth factor(EGF) as growth factor from human colostrum. The effects of purified EGF fraction were directly related to the growth of cells. Results were as follows; After eliminated fat from colostrum, skim milk was obtained. We obtained the EGF fraction by performing ultrafiltration and gel filtration, and then were convicted by SDS-PAGE. The result of analysis of purified EGF fraction by high performance liquid chromatography(HPLC) was shown a peak at 31.185 min period. And it was similar with standard EGF that was shown a peak at 31.545 min. 10 ng of EGF was contained in 10 mg/mL through immunoassay to measure EGF content from isolated fraction. After SDS-PAGE, isolation degree of purified fraction was convicted through western blotting. BALB/3T3 cell was the most effectively stimulated and proliferated at 1 mg/mL concentration of the purified EGF fraction and percentage of cell proliferation was about 95%. In the case of IEC-6 cell, that was about 71%.

A Characterization Study on Nafion$^{(R)}$/$ZrO_2-TiO_2$ Composite Membranes for PEMFC Operation at High Temperature and Low Humidity (고온/저가습 PEMFC 운전을 위한 Nafion$^{(R)}$/$ZrO_2-TiO_2$ 복합 전해질 막의 특성 연구)

  • Park, Ki-Tae;Chun, Jeong-Hwan;Choi, Dong-Woong;Kim, Sung-Hyun
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.1
    • /
    • pp.60-68
    • /
    • 2011
  • [ $ZrO_2-TiO_2$ ]binary oxides with various Zr:Ti molar ratios were prepared by sol-gel method and Nafion$^{(R)}$/$ZrO_2-TiO_2$ composite membranes were fabricated for proton exchange membrane fuel cells (PEMFCs) at high temperature and low humidity. Water uptake, Ion exchange capacity (IEC), and proton conductivity of Nafion$^{(R)}$/$ZrO_2-TiO_2$ composite membranes were characterized and these composite membranes were tested in a single cell at $120^{\circ}C$ with various relative humidity (R.H.) conditions. The obtained results were compared with the unmodified membranes (Nafion$^{(R)}$ 112 and Recast Nafion$^{(R)}$). A Nafion$^{(R)}$/$ZrO_2-TiO_2$ composite membrane with 1:3 of Zr:Ti molar ratio showed the highest performance. The performance showed 500 mW/$cm^2$ (0.499V) at $120^{\circ}C$, 50% R. H., and 2 atm.

Electrochemical Characterization of Tin Oxide Prepared by Microwave Heating (마이크로파로 합성한 주석산화물의 전기화학적 특성)

  • Kim, Won-Tae;Lee, Eu-Kyung;Cho, Byung-Won;Lee, Joong-Kee;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1119-1123
    • /
    • 2008
  • Tin oxide was prepared by microwave heating for anode material of lithium ion battery. The samples were heated at 300, 500 and $700^{\circ}C$ for 3h under flowing oxygen after microwave heating. The effect of microwave heating on the electrochemical performance of the manufactured tin oxide and the reversible capacity performance were investigated. Tin oxide heated at $500^{\circ}C$ showed higher capacity than those at $300^{\circ}C$ and $700^{\circ}C$ under microwave heating condition. Comparing microwave and furnace heating, microwave heating condition showed higher capacity. The discharge capacity after microwave heating and $500^{\circ}C$ heating showed 1,500 mAh/g.

The Study on the Characteristics of ReRAM with Annealing Temperature and Oxide Thickness (열처리 온도 및 산화층 두께에 따른 ReRAM 특성 연구)

  • Choi, Jin-hyung;Lee, Seung-cheol;Cho, Won-Ju;Park, Jong-tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.722-725
    • /
    • 2013
  • In this work, we have been analyzed the characteristics of ReRAM with different annealing condition and temperature. The ReRAM devices with top electrode=150nm, bottom electrode=150nm, oxide thickness=70nm and annealing temperature=$500^{\circ}C$, $850^{\circ}C$ have been used in characterization. The Set/Reset voltage, sensing window and resistivity have been characterized. From the measurement results, the Set/Reset voltage and sensing window have been enhanced as the annealing temperature has been increased. But it has been decreased as the temperature performance has been increased. In case of the annealing temperature=$850^{\circ}C$, the variation of Set/Reset voltage was lower than that of other condition. But the variation of sensing window was the lowest when the annealing temperature was $500^{\circ}C$. With considering the variation of Set/Reset voltage and sensing window, the devices annealed at $850^{\circ}C$ showed the best performance to ReRAM.

  • PDF