• Title/Summary/Keyword: performance characterization

Search Result 1,052, Processing Time 0.032 seconds

Study of different flexible aeration tube diffusers: Characterization and oxygen transfer performance

  • Hongprasith, Narapong;Dolkittikul, Natchanok;Apiboonsuwan, Kamolnapach;Pungrasmi, Wiboonluk;Painmanakul, Pisut
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.233-240
    • /
    • 2016
  • The research aims to study the different flexible rubber tube diffusers used in urban wastewater treatment processes and aquaculture systems. The experiment was conducted in small-scale aeration tank with different physical properties of the tubes that were used as aerators. The volumetric mass transfer coefficient ($k_La$), oxygen transfer efficiency (OTE) and aeration efficiency (AE) were measured and determined to compare the diffusers. Moreover, the bubble hydrodynamic parameters were analyzed in terms of bubble diameter ($d_B$) and rising velocity ($U_B$) by a high speed camera (2,000 frames/s). Then the interfacial area (a) and liquid-side mass transfer coefficient ($k_L$) can be calculated. The physical properties (tube wall thickness, tensile strength, orifice size, hardness and elongation) have been proven to be the key factor that controls the performance (kLa and OTE). The effects of hardness and elongation on bubble formation, orifice size and a-area were clearly proved. It is not necessary to generate too much fine bubbles to increase the a-area: this relates to high power consumption and the decrease of the kL. Finally, the wall thickness, elongation and hardness associated of the flexible tube diffuser (tube No. 12) were concluded, to be the suitable properties for practically producing, in this research.

Fabrication and Characterization of Porous PLLA Scaffolds with Gentamicin Sulfate Release System (겐타마이신 설페이트를 서방화한 다공성 PLLA 지지체의 제조와 물성평가)

  • 최명규;강길선;이일우;이종문;이해방
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.318-326
    • /
    • 2001
  • PLLA scaffold loaded with gentamicin sulfate (GS) was prepared by emulsion freeze-drying method for the prevention of infection and the improvement of wettability. i.e., the cell- and tissue-compatibility. GS-loaded PLLA scaffolds were characterized by scanning electron microscopy (SEM), mercury porosimetry and blue dye intrusion, and the GS release pattern was analyzed by high performance liquid chromatography (HPLC). GS-loaded PLLA scaffolds with porosity above 50%, medium pore size ranging from 30 to 57 ${\mu}{\textrm}{m}$ (with larger pore diameters greater than 150 ${\mu}{\textrm}{m}$), and specific pore area in the range of 35 to 75($m^2$ /g )were manufactured by varying processing parameter as GS concentration. It was observed that GS-loaded PLLA scaffolds were highly porous with good interconnections between pores for allowing cell adhesion and growth. These scaffolds may be applicable for scaffold as structures that facilitate either tissue regeneration or repair during reconstructive operations.

  • PDF

A Deep Investigation of the Thermal Decomposition Process of Supported Silver Catalysts

  • Jiang, Jun;Xu, Tianhao;Li, Yaping;Lei, Xiaodong;Zhang, Hui;Evans, D.G.;Sun, Xiaoming;Duan, Xue
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1832-1836
    • /
    • 2014
  • A deep understanding of the metallic silver catalysts formation process on oxide support and the formation mechanism is of great scientific and practical meaning for exploring better catalyst preparing procedures. Herein the thermal decomposition process of supported silver catalyst with silver oxalate as the silver precursor in the presence of ethylenediamine and ethanolamine is carefully investigated by employing a variety of characterization techniques including thermal analysis, in situ diffuse reflectance infrared Fourier transform spectroscopy, scanning electron microscopy, and X-ray diffraction. The formation mechanism of supported silver particles was revealed. Results showed that formation of metallic silver begins at about $100^{\circ}C$ and activation process is essentially complete below $145^{\circ}C$. Formation of silver was accompanied by decomposition of oxalate group and removal of organic amines. Catalytic performance tests using the epoxidation of ethylene as a probe reaction showed that rapid activation (for 5 minutes) at a relatively low temperature ($170^{\circ}C$) afforded materials with optimum catalytic performance, since higher activation temperatures and/or longer activation times resulted in sintering of the silver particles.

Target-Moderator-Reflector system for 10-30 MeV proton accelerator-driven compact thermal neutron source: Conceptual design and neutronic characterization

  • Jeon, Byoungil;Kim, Jongyul;Lee, Eunjoong;Moon, Myungkook;Cho, Sangjin;Cho, Gyuseong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.633-646
    • /
    • 2020
  • Imaging and scattering techniques using thermal neutrons allow to analyze complex specimens in scientific and industrial researches. Owing to this advantage, there have been a considerable demand for neutron facilities in the industrial sector. Among neutron sources, an accelerator driven compact neutron source is the only one that can satisfy the various requirements-construction budget, facility size, and required neutron flux-of industrial applications. In this paper, a target, moderator, and reflector (TMR) system for low-energy proton-accelerator driven compact thermal neutron source was designed via Monte Carlo simulations. For 10-30 MeV proton beams, the optimal conditions of the beryllium target were determined by considering the neutron yield and the blistering of the target. For a non-borated polyethylene moderator, the neutronic properties were verified based on its thickness. For a reflector, three candidates-light water, beryllium, and graphite-were considered as reflector materials, and the optimal conditions were identified. The results verified that the neutronic intensity varied in the order beryllium > light water > graphite, the compacter size in the order light water < beryllium < graphite and the shorter emission time in the order graphite < light water < beryllium. The performance of the designed TMR system was compared with that of existing facilities and were laid between performance of existing facilities.

Structural and Electrochemical Characterization of LiFePO4 Synthesized by Hydrothermal Method

  • Jeon, Yeon-Su;Jin, En-Mei;Jin, Bo;Jun, Dae-Kyoo;Han, Zhen-Ji;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.41-45
    • /
    • 2007
  • Phospho-olivine $LiFePO_4$ cathode materials were prepared by hydrothermal reaction. Carbon black was added to enhance the electrical conductivity of $LiFePO_4$. The structural and morphological performance of $LiFePO_4$ and $LiFePO_4$-C powders were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). $LiFePO_4$/Li and $LiFePO_4$-C/Li cells were characterized electrochemically by cyclic voltammogram (CV), charge/discharge experiments and ac impedance spectroscopy. The results showed that the discharge capacity of $LiFePO_4$/Li cell was 147 mAh/g at the first cycle and 118 mAh/g after 30 cycles, respectively. The discharge capacity of $LiFePO_4$-C/Li cell with 5 wt% carbon black was the largest among $LiFePO_4$-C/Li cells, 133 mAh/g at the first cycle and 128 mAh/g after 30 cycles, respectively. It was demonstrated that cycling performance of $LiFePO_4$-C/Li cell with 5 wt% carbon black was better than that of $LiFePO_4$/Li cell.

Influence of porosity and cement grade on concrete mechanical properties

  • Huang, Jiandong;Alyousef, Rayed;Suhatril, Meldi;Baharom, Shahrizan;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Assilzadeh, Hamid
    • Advances in concrete construction
    • /
    • v.10 no.5
    • /
    • pp.393-402
    • /
    • 2020
  • The given research focuses on examining the effect of relatively humidity (RH) and curing temperature on the hydrates as well as the porosity of calcium sulfoaluminate (CSA) cement pastes. Numerous tests, which consist of mercury intrusion porosimetry (MIP), thermosgravi metric (TG) and X-ray diffraction (XRD) were conducted. Various characterization techniques which include, scanning electron microscopy, Fourier transform microscopy along with X-ray diffraction evaluations were conducted on the samples to examine phase formation and crystallinity, morphology and microstructure along with bond formations and functional groups, respectively. During long-term study, the performance of concrete which consisted of limestone and flash-calcined was close to those from standard Portland cement concrete. Traditional classifications and methods of corrosion were widely used for the assessment of steel in concrete which may get employed to concrete which contains LC3 to recalibrate the range of polarization resistance for passitivity condition. For example, there is up to 79.5% and 146% respective flexural and compressive strengths. Moreover, they developed more advance electrical and thermo-mechanical performance with a substantial reduction in absorption of water of close to 400%. These advantages allow this research crucial to evaluate how these methods can be applied. Additionally, the research evaluates developed and more advanced cement preservation and repair techniques. The conclusion suggests concerted efforts by various stakeholders such as policy makers to enable low-carbon rates.

Adsorption characteristics of the sericite and diatomite for ammonia gas (견운모와 규조토에 대한 암모니아 기체의 흡착특성)

  • Lee, Suseung;Kim, Jinsoo;Yun, Chang Yeon;Yi, Jongheop
    • Clean Technology
    • /
    • v.12 no.3
    • /
    • pp.175-181
    • /
    • 2006
  • The feasibility of the use of porous fossil diatoms for indoor air pollution control was investigated via the characterization of physical and chemical properties. The fossil diatoms were observed by SEM(Scanning Electron Microscope). Diatomite had well-distributed pores below 5 nm and relatively large surface area compare to sericite. However, no porosity in sericite was found. Results showed that diatomite had better performance than sericite in respect to porosity and large surface area. But diatomite which is thermally treated at $950^{\circ}C$ has no porosity and low surface area because of combustion of fossil diatoms or calcination of inorganic oxide at high temperature, and has poor adsorption capability of ammonia gas. In conclusion, porous diatomite has relatively high performance to adsorb noxious chemical compounds, such as ammonia gas and VOCs.

  • PDF

Effect of Interfacial Reaction Layer on the Electrochemical Performance of LSGM-Based SOFCs (LSGM계 고체산화물 연료전지의 전기화학적 성능에 미치는 계면반응층의 영향)

  • Kim, Kwang-Nyeon;Moon, Jooho;Kim, Hyoungchul;Son, Ji-Won;Kim, Joosun;Lee, Hae-Weon;Lee, Jong-Ho;Kim, Byung-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.10 s.281
    • /
    • pp.665-671
    • /
    • 2005
  • LSGM is known to show very serious interfacial reaction with other unit cell components, such as electrode, electrode functional or buffering layers. Especially, the formation of very resistive LaSr$Ga_{3}$$O_{7}$ phase at the interface of an anode and an electrolyte is the most problematic one in LSGM-based SOFCs. In this study, we investigated the interfacial reactions in LSGM-based SOFCs under different unit cell configurations. According to the microstructural analysis on the interfacial layer between an electrolyte and its neighboring component, serious interfacial reaction zone was observed. From the electrical and electrochemical characterization of the cell, we found such an interfacial reaction zone not only increased the internal ohmic resistance but also decreased the OCV(Open Cell Voltage) of the unit cell, and thus consequently deteriorated the unit cell performance.

Lyapunov-based Semi-active Control of Adaptive Base Isolation System employing Magnetorheological Elastomer base isolators

  • Chen, Xi;Li, Jianchun;Li, Yancheng;Gu, Xiaoyu
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1077-1099
    • /
    • 2016
  • One of the main shortcomings in the current passive base isolation system is lack of adaptability. The recent research and development of a novel adaptive seismic isolator based on magnetorheological elastomer (MRE) material has created an opportunity to add adaptability to base isolation systems for civil structures. The new MRE based base isolator is able to significantly alter its shear modulus or lateral stiffness with the applied magnetic field or electric current, which makes it a competitive candidate to develop an adaptive base isolation system. This paper aims at exploring suitable control algorithms for such adaptive base isolation system by developing a close-loop semi-active control system for a building structure equipped with MRE base isolators. The MRE base isolator is simulated by a numerical model derived from experimental characterization based on the Bouc-Wen Model, which is able to describe the force-displacement response of the device accurately. The parameters of Bouc-Wen Model such as the stiffness and the damping coefficients are described as functions of the applied current. The state-space model is built by analyzing the dynamic property of the structure embedded with MRE base isolators. A Lyapunov-based controller is designed to adaptively vary the current applied to MRE base isolator to suppress the quake-induced vibrations. The proposed control method is applied to a widely used benchmark base-isolated structure by numerical simulation. The performance of the adaptive base isolation system was evaluated through comparison with optimal passive base isolation system and a passive base isolation system with optimized base shear. It is concluded that the adaptive base isolation system with proposed Lyapunov-based semi-active control surpasses the performance of other two passive systems in protecting the civil structures under seismic events.

Effect of line and floor type on growth performance and feather characterization during the growth period of White Roman geese

  • Lin, Min Jung;Chang, Shen Chang;Chen, Tzu Jou;Lin, Wei Chih;Peng, Shao Yu;Lee, Tzu Tai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.9
    • /
    • pp.1455-1462
    • /
    • 2020
  • Objective: The purpose of this study was to investigate whether goose growth and feather characteristics are influenced by their line and feeding surroundings, inclusive of floor materials and types, since there are no reports regarding these factors. Methods: The 240 White Roman geese which were hatched and sex identified came from 3 commercial goose farms. They were randomly distributed to 24 pens depending on a completely random design. The study continued for 13 weeks and included 3 lines of commercial geese and 2 floor types (cement strip floor [CSF] or cement floor [CF]). Results: The day one gosling weight from A farm was lower than other two farms (96 g vs 107 and 115 g; p<0.001). Afterwards, the body weight, back length, keel length, chest girth and main wing feather length among 3 farms showed no significance difference prior to 12 weeks. The CF group showed heavier body weight, shorter back length, longer keel length, shorter chest girth and shorter main wing feather length than the CSF group prior to 12 weeks. The down weight in the CF was heavier than the CSF group (57.1 g vs 41.8 g; p<0.01) prior to 13 weeks. Conclusion: The body weight showed the positive relations for dry feather weight (r = 0.59), down weight (r = 0.69), percent of the down weight of live body weight prior to 13 weeks (r = 0.61).