• 제목/요약/키워드: performance characterization

Search Result 1,052, Processing Time 0.027 seconds

Flexible poly(vinyl alcohol)-ceramic composite separators for supercapacitor applications

  • Bon, Chris Yeajoon;Mohammed, Latifatu;Kim, Sangjun;Manasi, Mwemezi;Isheunesu, Phiri;Lee, Kwang Se;Ko, Jang Myoun
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.173-179
    • /
    • 2018
  • Electrochemical characterization was conducted on poly(vinyl alcohol) (PVA)-ceramic composite (PVA-CC) separators for supercapacitor applications. The PVA-CC separators were fabricated by mixing various ceramic particles including aluminum oxide ($Al_2O_3$), silicon dioxide ($SiO_2$), and titanium dioxide ($TiO_2$) into a PVA aqueous solution. These ceramic particles help to create amorphous regions in the crystalline structure of the polymer matrix to increase the ionic conductivity of PVA. Supercapacitors were assembled using PVA-CC separators with symmetric activated carbon electrodes and electrochemical characterization showed enhanced specific capacitance, rate capability, cycle life, and ionic conductivity. Supercapacitors using the $PVA-TiO_2$ composite separator showed particularly good electrochemical performance with a 14.4% specific capacitance increase over supercapacitors using the bare PVA separator after 1000 cycles. With regards to safety, PVA becomes plasticized when immersed in 6 M KOH aqueous solution, thus there was no appreciable loss in tear resistance when the ceramic particles were added to PVA. Thus, the enhanced electrochemical properties can be attained without reduction in safety making the addition of ceramic nanoparticles to PVA separators a cost-effective strategy for increasing the ionic conductivity of separator materials for supercapacitor applications.

Characterization of recycled polycarbonate from electronic waste and its use in hydraulic concrete: Improvement of compressive performance

  • Colina-Martinez, Ana L. De la;Martinez-Barrera, Gonzalo;Barrera-Diaz, Carlos E.;Avila-Cordoba, Liliana I.;Urena-Nunez, Fernando
    • Advances in concrete construction
    • /
    • v.5 no.6
    • /
    • pp.563-573
    • /
    • 2017
  • Transparency, excellent toughness, thermal stability and a very good dimensional stability make Polycarbonate (PC) one of the most widely used engineering thermoplastics. Polycarbonate market include electronics, automotive, construction, optical media and packaging. One alternative for reducing the environmental pollution caused by polycarbonate from electronic waste (e-waste), is to use it in cement concretes. In this work, physical and chemical characterization of recycled polycarbonate from electronic waste was made, through the analysis by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and scanning electron microscope (SEM). Then cement concrete was made with Portland cement, sand, gravel, water, and this recycled polycarbonate. Specimens without polycarbonate were produced for comparison purposes. The effect of the particle sizes and concentrations of recycled polycarbonate within the concrete, on the compressive strength and density was studied. Results show that compressive strength values and equilibrium density of concrete depend on the polycarbonate particle sizes and its concentrations; particularly the highest compressive strength values were 20% higher than that for concrete without polycarbonate particles. Moreover, morphological, structural and crystallinity characteristics of recycled polycarbonate, are suitable for to be mixed into concrete.

Synthesis and Characterization of Zinc Oxide Nanorods for Nitrogen Dioxide Gas Detection

  • Park, Jong-Hyun;Kim, Hyojin
    • Journal of Surface Science and Engineering
    • /
    • v.54 no.5
    • /
    • pp.260-266
    • /
    • 2021
  • Synthesizing low-dimensional structures of oxide semiconductors is a promising approach to fabricate highly efficient gas sensors by means of possible enhancement in surface-to-volume ratios of their sensing materials. In this work, vertically aligned zinc oxide (ZnO) nanorods are successfully synthesized on a transparent glass substrate via seed-mediated hydrothermal synthesis method with the use of a ZnO nanoparticle seed layer, which is formed by thermally oxidizing a sputtered Zn metal film. Structural and optical characterization by x-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy reveals the successful preparation of the ZnO nanorods array of the single hexagonal wurtzite crystalline phase. From gas sensing measurements for the nitrogen dioxide (NO2) gas, the vertically aligned ZnO nanorod array is observed to have a highly responsive sensitivity to NO2 gas at relatively low concentrations and operating temperatures, especially showing a high maximum sensitivity to NO2 at 250 ℃ and a low NO2 detection limit of 5 ppm in dry air. These results along with a facile fabrication process demonstrate that the ZnO nanorods synthesized on a transparent glass substrate are very promising for low-cost and high-performance NO2 gas sensors.

Vision-based support in the characterization of superelastic U-shaped SMA elements

  • Casciati, F.;Casciati, S.;Colnaghi, A.;Faravelli, L.;Rosadini, L.;Zhu, S.
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.641-648
    • /
    • 2019
  • The authors investigate the feasibility of applying a vision-based displacement-measurement technique in the characterization of a SMA damper recently introduced in the literature. The experimental campaign tests a steel frame on a uni-axial shaking table driven by sinusoidal signals in the frequency range from 1Hz to 5Hz. Three different cameras are used to collect the images, namely an industrial camera and two commercial smartphones. The achieved results are compared. The camera showing the better performance is then used to test the same frame after its base isolation. U-shaped, shape-memory-alloy (SMA) elements are installed as dampers at the isolation level. The accelerations of the shaking table and those of the frame basement are measured by accelerometers. A system of markers is glued on these system components, as well as along the U-shaped elements serving as dampers. The different phases of the test are discussed, in the attempt to obtain as much possible information on the behavior of the SMA elements. Several tests were carried out until the thinner U-shaped element went to failure.

Probabilistic Q-system for rock classification considering shear wave propagation in jointed rock mass

  • Kim, Ji-Won;Chong, Song-Hun;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.449-460
    • /
    • 2022
  • Safe underground construction in a rock mass requires adequate ground investigation and effective determination of rock conditions. The estimation of rock mass behavior is difficult, because rock masses are innately anisotropic and heterogeneous at different scales and are affected by various environmental factors. Quantitative rock mass classification systems, such as the Q-system and rock mass rating, are widely used for characterization and engineering design. The measurement of rock classification parameters is subjective and can vary among observers, resulting in questionable accuracy. Geophysical investigation methods, such as seismic surveys, have also been used for ground characterization. Torsional shear wave propagation characteristics in cylindrical rods are equal to that in an infinite media. A probabilistic quantitative relationship between the Q-value and shear wave velocity is thus investigated considering long-wavelength wave propagation in equivalent continuum jointed rock masses. Individual Q-system parameters are correlated with stress-dependent shear wave velocities in jointed rocks using experimental and numerical methods. The relationship between the Q-value and the shear wave velocity is normalized using a defined reference condition. This relationship is further improved using probabilistic analysis to remove unrealistic data and to suggest a range of Q-values for a given wave velocity. The proposed probabilistic Q-value estimation is then compared with field measurements and cross-hole seismic test data to verify its applicability.

Raman scattering spectroscopy as a characterization method of coated conductors

  • Um, Y.M.;Jo, W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.4
    • /
    • pp.24-27
    • /
    • 2007
  • The purpose of this work is to develop, integrate, and implement an optical characterization method to evaluate physical properties in coated conductors and investigate the local distribution of the causes of degraded performance. The method that we selected at this moment is Raman scattering spectroscopy, which is accompanied with measurements of local supercurrent transport, phase composition, microstructure, and epitaxy quality for coated conductors that range in size up to multi-meter-length tapes and that embrace the entire tape embodiment (substrate through cap layer). The establishment of Raman spectroscopy as an on-line process monitoring tool is our eventual goal of research, but it requires very robust and cost-effective equipments. We analyzed $YBa_2Cu_3O_7(YBCO)$ thin films grown at various substrate temperatures by using Raman spectroscopy. YBCO films were grown by a high-rate electron-beam co-evaporation method. Raman spectra of YBCO films with lower-transport properties exhibit additional phonon modes at ${\sim}300cm^{-1}$, ${\sim}600cm^{-1}$ and ${\sim}630cm^{-1}$, which are related to second-phases such as $Ba_2Cu_3O_{5.9}$ and $BaCuO_2$. We propose a new method to characterize Raman spectra of coated conductors for an in-line quality control.

Si-Containing Nanostructures for Energy-Storage, Sub-10 nm Lithography, and Nonvolatile Memory Applications

  • Jeong, Yeon-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.108-109
    • /
    • 2012
  • This talk will begin with the demonstration of facile synthesis of silicon nanostructures using the magnesiothermic reduction on silica nanostructures prepared via self-assembly, which will be followed by the characterization results of their performance for energy storage. This talk will also report the fabrication and characterization of highly porous, stretchable, and conductive polymer nanocomposites embedded with carbon nanotubes (CNTs) for application in flexible lithium-ion batteries. It will be presented that the porous CNT-embedded PDMS nanocomposites are capable of good electrochemical performance with mechanical flexibility, suggesting these nanocomposites could be outstanding anode candidates for use in flexible lithium-ion batteries. Directed self-assembly (DSA) of block copolymers (BCPs) can generate uniform and periodic patterns within guiding templates, and has been one of the promising nanofabrication methodologies for resolving the resolution limit of optical lithography. BCP self-assembly processing is scalable and of low cost, and is well-suited for integration with existing semiconductor manufacturing techniques. This talk will introduce recent research results (of my research group) on the self-assembly of Si-containing block copolymers for the achievement of sub-10 nm resolution, fast pattern generation, transfer-printing capability onto nonplanar substrates, and device applications for nonvolatile memories. An extraordinarily facile nanofabrication approach that enables sub-10 nm resolutions through the synergic combination of nanotransfer printing (nTP) and DSA of block copolymers is also introduced. This simple printing method can be applied on oxides, metals, polymers, and non-planar substrates without pretreatments. This talk will also report the direct formation of ordered memristor nanostructures on metal and graphene electrodes by the self-assembly of Si-containing BCPs. This approach offers a practical pathway to fabricate high-density resistive memory devices without using high-cost lithography and pattern-transfer processes. Finally, this talk will present a novel approach that can relieve the power consumption issue of phase-change memories by incorporating a thin $SiO_x$ layer formed by BCP self-assembly, which locally blocks the contact between a heater electrode and a phase-change material and reduces the phase-change volume. The writing current decreases by 5 times (corresponding to a power reduction of 1/20) as the occupying area fraction of $SiO_x$ nanostructures varies.

  • PDF

Rate-capability response of graphite anode materials in advanced energy storage systems: a structural comparison

  • Farooq, Umer;Doh, Chil-Hoon;Pervez, Syed Atif;Kim, Doo-Hun;Lee, Sang-Hoon;Saleem, Mohsin;Sim, Seong-Ju;Choi, Jeong-Hee
    • Carbon letters
    • /
    • v.17 no.1
    • /
    • pp.39-44
    • /
    • 2016
  • The work presented in this report was a detailed comparative study of the electrochemical response exhibited by graphite anodes in Li-ion batteries having different physical features. A comprehensive morphological and physical characterization was carried out for these graphite samples via X-ray diffraction and scanning electron microscopy. Later, the electrochemical performance was analyzed using galvanostatic charge/discharge testing and the galvanostatic intermittent titration technique for these graphite samples as negative electrode materials in battery operation. The results demonstrated that a material having a higher crystalline order exhibits enhanced electrochemical properties when evaluated in terms of rate-capability performance. All these materials were investigated at high C-rates ranging from 0.1C up to 10C. Such improved response was attributed to the crystalline morphology providing short layers, which facilitate rapid Li+ ions diffusivity and electron transport during the course of battery operation. The values obtained for the electrical conductivity of these graphite anodes support this possible explanation.

Optimization and Molecular Characterization of Exoelectrogenic Isolates for Enhanced Microbial Fuel Cell Performance

  • Nwagu, Kingsley Ekene;Ekpo, Imo A.;Ekaluo, Benjamin Utip;Ubi, Godwin Michael;Elemba, Munachimso Odinakachi;Victor, Uzoh Chukwuma
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.621-629
    • /
    • 2019
  • In this study we attempted to screen bacteria and fungi that generate electricity while treating wastewater using optimized double-chamber microbial fuel cell (MFC) system parameters. Optimization was carried out for five best exoelectrogenic isolates (two bacteria and three fungi) at pH values of 6.0, 7.5, 8.5, and 9.5, and temperatures of 30, 35, 40, and 45℃; the generated power densities were measured using a digital multimeter (DT9205A). The isolates were identified using molecular characterization, followed by the phylogenetic analysis of isolates with known exoelectrogenic microorganisms. The bacterium, Proteus species, N6 (KX548358.1) and fungus, Candida parapsilosis, S10 (KX548360) produced the highest power densities of 1.59 and 1.55 W/m2 (at a pH of 8.5 and temperatures of 35 and 40℃) within 24 h, respectively. Other fungi-Clavispora lusitaniae, S9 (KX548359.1) at 40℃, Clavispora lusitaniae, S14 (KX548361.1) at 35℃-and bacterium-Providencia species, N4 (KX548357.1) at 40℃-produced power densities of 1.51, 1.46, and 1.44 W/m2, respectively within 24 h. The MFCs achieved higher power densities at a pH of 8.5, temperature of 40℃ within 24 h. The bacterial isolates have a close evolutionary relationship with other known exoelectrogenic microorganisms. These findings helped us determine the optimal pH, temperature, evolutionary relationship, and exoelectrogenic fungal species other than bacteria that enhance MFC performance.

Radiometric performance characterization for breadboard AMON-RA energy channel instrument for deep space albedo measurement

  • Jung, Kil-Jae;Ryu, Dong-Ok;Ahn, Ki-Beom;Oh, Eun-Song;Lee, Jae-Min;Kim, Yun-Jong;Yu, Jin-Hee;Yi, Hyun-Su;Ham, Sun-Jung;Yoon, Ji-Yeon;Yoon, Ho-Seop;Hong, Jin-Seok;Yang, Ho-Soon;Chon, Byong-Hyok;Hwang, Hae-Sook;Lee, Han-Shin;Kim, Sug-Whan;Lockwood, Mike
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.35.2-35.2
    • /
    • 2008
  • The Albedo MONitor and RAdiometer (AMON-RA) instrument system is designed to measure Earth global albedo anomaly over the wavelength range of 0.3um to 4um. The instrument consists of two interconnecting optical subsystems i.e. a visible channel and an energy channel. The energy channel instrument consists of a modified Winston cone, a couple of relay mirrors and a pyro-electric detector. First, we report the integration and alignment process, leading to the prototype bolometer instrument. We then discuss the radiometric performance characterization including laboratory measurement results and the future plan for further incorporation of the bolometer instrument into the prototype AMON-RA instrument.

  • PDF