• Title/Summary/Keyword: perforated-wall caisson breakwaters

Search Result 7, Processing Time 0.02 seconds

Pressure Distribution and Caisson Stability of Perforated Breakwaters (유공 방파제의 파압분포특성과 안정도)

  • 전인식;박우선;이달수
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.2
    • /
    • pp.66-75
    • /
    • 1993
  • Hydraulic experiments were performed in order to gain an insight into the quantitative differences between the perforated wall caisson and its solid wall counterpart in the local pressure distribution and caisson stability. The results showed that the wave forces acting on local walls were smaller in the perforated wall caisson than in the solid wall caisson. For the caisson stability, the critical weights of the perforated wall caisson also turned out to be smaller than those of the solid wall caisson. The Phenomenon was attributed to the dual effects inherent to the perforated wall caisson, which are the decrease of total horizontal force and the phase difference between the total horizontal and vertical forces.

  • PDF

Application of a Regular Wave Model to Calculation of Irregular Wave Reflection from Perforated-Wall Caisson Breakwaters (불규칙파의 유공 케이슨 방파제로부터의 반사율 산정시 규칙파 모델 적용)

  • Suh Kyung Duck;Son Sang Young
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.205-208
    • /
    • 2002
  • Numerous studies have been performed to develop an analytical model that can predict the reflection of regular or irregular waves from a perforated-wall caisson breakwater. Though such irregular wave models as Suh et at. (2001) become available, regular wave models are still in extensive use because of their simplicity. In the present study, using the regular wave model of Fuggazza and Natale(1992), the reflection of irregular waves from a perforated-wall caisson breakwater was calculated in several different methods. First, the regular wave model was re-validated by the hydraulic model tests. Though the model somewhat over-predicted the reflection coefficients at larger values and under-predicted them at smaller values, overall agreement was pretty good between calculation and measurement. Then, the regular wave model was applied to calculate the irregular wave reflection in the experiments of Suh et at.(2001) and Bennett et al. (1992). In applying the regular wave model to irregular wave reflection, several different methods were used. The results showed that it is the most reasonable to use the regular wave model repeatedly for each frequency component of the irregular wave specuum with the root-mean-squared wave height for all the frequencies .

  • PDF

On the Calculation of Irregular Wave Reflection from Perforated-Wall Caisson Breakwaters Using a Regular Wave Model (규칙파 모델을 이용한 유공케이슨 방파제로부터의 불규칙파 반사율 산정에 대하여)

  • 서경덕;손상영
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.1
    • /
    • pp.11-20
    • /
    • 2003
  • In this paper we examine several methods tor calculating the reflection of irregular waves from a perforated-wall caisson breakwater using a regular wave model. The first method is to approximate the irregular waves as a regular wave whose height and period are the same as the root-mean-squared wave height and significant wave period, respectively, of the irregular waves. The second is to use the regular wave model, repeatedly, for each frequency component of the irregular wave spectrum. The wave period is determined according to the frequency of the component wave, and the root-mean-squared wave height is used for all the frequencies. The third method is the same as the second one except that the wave height corresponding to the energy of each component wave is used. Comparison with experimental data from previous authors shows the second method is the most adequate, giving reasonable agreement in both frequency-averaged reflection coefficients and reflected wave spectra.

Three-dimensional Simulation of Wave Reflection and Pressure Acting on Circular Perforated Caisson Breakwater by OLAFOAM (OLAFOAM에 기초한 원형유공케이슨 방파제의 반사율 및 작용파압에 관한 3차원시뮬레이션)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;Kim, Sang-Gi;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.286-304
    • /
    • 2017
  • In this study, we proposed a new-type of circular perforated caisson breakwater consisting of a bundle of latticed blocks that can be applied to a small port such as a fishing port, and numerically investigated the hydraulic characteristics of the breakwater. The numerical method used in this study is OLAFOAM which newly added wave generation module, porous media analysis module and reflected wave control module based on OpenFOAM that is open source CFD software published under the GPL license. To investigate the applicability of OLAFOAM, the variations of wave pressure acting on the three-dimensional slit caisson were compared to the previous experimental results under the regular wave conditions, and then the performance for irregular waves was examined from the reproducibility of the target irregular waves and frequency spectrum analysis. As a result, a series of numerical simulations for the new-type of circular perforated caisson breakwaters, which is similar to slit caisson breakwater, was carried out under the irregular wave actions. The hydraulic characteristics of the breakwater such as wave overtopping, reflection, and wave pressure distribution were carefully investigated respect to the significant wave height and period, the wave chamber width, and the interconnectivity between them. The numerical results revealed that the wave pressure acting on the new-type of circular perforated caisson breakwaters was considerably smaller than the result of the impermeable vertical wall computed by the Goda equation. Also, the reflection of the new-type caisson breakwater was similar to the variation range of the reflection coefficient of the existing slit caisson breakwater.

Reflection Characteristics of Vortical Slit Caisson Breakwater (종 SLIT형 케이슨 방파제의 반사특성)

  • 이종인;조지훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.4
    • /
    • pp.263-272
    • /
    • 2001
  • Recently, some attempts to construct slit caisson-type breakwaters are made in Korea. Since slit caisson-type breakwaters are suitable for relatively deep sea areas, a lot of theoretical and experimental researches have been performed. In this study, the reflection characteristics of vertical slit caisson breakwaters are investigated based on the measured data in two-dimensional hydraulic model tests with irregular waves. The experiments were conducted for various cases; variation of porosity of perforated-wall, width of wave chamber, number of slits for single-and double-chamber, respectively. It is found that in the case when the wave steepness (H/L$_{s}$ ) is small, the reflection coefficients are large. The existing researches have shown that the wave reflection is minimized when the nondimensional width of wave chamber B/L is about 0.2~0.25 for the regular waves. However, for the irregular waves the reflection is lowest when $B/L_2$, is 0.13~0.15. For a same porosity condition, the wave dissipation is stronger as the width of s1it is larger. The double-chamber caisson is superior to single- chamber caisson in the wave dissipating effects.

  • PDF

Wave Reflection of Perforated-Wall Caisson Breakwaters with Curtain-Wall (직립 유공케이슨 방파제의 현수판 사용에 따른 반사특성)

  • Lee, Seung Hyeob;Hwang, Jong Kil;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1454-1458
    • /
    • 2004
  • 본 인구에서는 직립 유공 케이슨에 현수판을 설치함으로서 입사파의 반사율을 저감시키고자 하였다. 먼저 케이슨 단면의 적정 유공율을 선정하기 위해 횡 SLIT 케이슨식 2개안 및 종 SLIT 1개안 단면에 대한 단면 실험을 실시하였다. 선행된 실험에서 가장 반사율이 낮은 SLIT 케이슨을 선택하여 유수실에 현수판을 설치 하였으며 현수판의 설치유무 및 현수판의 길이에 따른 반사계수를 검토하였다. 설치된 현수판은 장주기파에 대해서 반사율 저감효과를 얻을 수 없었지만 단주기 파에서는 반사율이 줄어드는 효과를 얻을 수 있었다. 해역에따라 단주기가 주류를 이루는 해역에서 현수판을 설치하면 파랑내습시 소파효과가 증대될 것으로 기대된다.

  • PDF