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1 Introductiqn

A composite breakwater is widely used, which consists of the lower rubble foundation and
the upper upright section. One of the drawbacks of a conventional composite breakwater
compared to a rubble mound breakwater is that the increased agitation on the sea side
of the breakwater due to severe wave reflection from the caisson can make difficulties on
navigation or anchoring of ships. In order to overcome this drawback a perforated-wall
caisson is often used, which reduces the reflection by dissipating the wave energy due to
turbulence generated when the waves enter the wave chamber through the perforated wall
and by the resonance occuring in the wave chamber.

In order to examine the reflection characteristics of a perforated-wall caisson breakwa-
ter, hydraulic model tests have been used [Tanimoto et al. (1976) among others]. Re-
cently Fugazza and Natale (1992) proposed an analytic solution for wave reflection from
a perforated-wall caisson situating on a flat bed. More recently Massel (1993) developed
an extended refraction-diffraction equation using the Galerkin-eigenfunction method. This
equation includes higher order terms of the bottom slope and the term proportional to the
bottom curvature which were neglected in the mild-slope equation so that it can be applied
to wave propagation over a bed consisting of substantial variations in water depth.

In the present study, using the Galerkin-eigenfunction method, we develop a model for
calculating the wave reflection from a perforated-wall caisson breakwater mounted on a
rubble mound foundation. Qur approach is more versatile than that of Fugazza and Natale
(1992) in that it can include the effect of rubble foundation and it can be applied to the
case in which the waves are incident obliquely to the breakwater. On a flat bed our solution
is compared with that of Fugazza and Natale (1992). Comparison is also made against the
hydraulic experimental data for a breakwater mounted on a rubble mound foundation.

2 Theoretical Analysis

Assuming inviscid irrotational flow, the velocity potential ®(z, y, z,t) for the monochromatic

wave propagating over the water depth h(z,y) with the angular frequency w and wave height
H can be expressed as

®(z,y,2,t) = Re{‘iqub(z,y, z)exp(—iwt)} (1)
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in which-i = v/=1; g = gravitational acceleration; and the symble Re represents the real
part of a complex value. Linearizing the free-surface boundary conditions, the following
boundary value problem for the potential ¢(z,y, z) is obtained:

%
V2¢’+a_ﬁ‘° (2)
0 _ _
3, ~ =0 atz=0 | . (3)
_g;f_l_V(j,.Vh: 0 atz= —h(z,y) (4)

in which V represents the horizontal gradient operator, and A = w?/g is a wave number in
deep water. As mentionet In the Introduction, the Galerkin-eigenfunction method is used
to formulate the problem. Considering the solution of (2) - (4) the function ¢(z,y,2) is
expanded in terms of N + 1 depth-dependent functions Z,(z,y, z):

N
#z,9,2) = ) on(2,9)Zn(2,9,2) (5)
=0
The functions Zy,(z,y, z) are taken as
_ cosan(z + h)]
Zn(a:,y,"z) ~ cos(anh) (6)

so as to form a complete orthogonal set of eigenfunctions in the domain (—h(z,y),0). The
wave numbers a, are the solution of the following dispersion relation:

A+ aptan(a,h) =0 (7)

which has an infinite discrete set of real roots ta, and a pair of imaginary roots ag = tik.
Therefore, the function Zy(z,y,2) represents the free propagating wave mode, while the
functions Z,(z,y,2) (n > 1) correspond to the non-propagating evanescent wave modes.
The functions Z,(z,y, z) satisfy the free surface boundary condition (3) and do not satisfy
the bottom boundary condition (4) individually. However, the global set of orthogonal
functions should satisfy this condition. This is known as a tau method (Canuto et al,
1988). In the tau method, a sufficient number of the functions ¢, (z,y) in the approximated
solution (5) is chosen to ensure exact satisfaction of the bottom boundary condition.

Now let us consider the perforated-wall caisson breakwater sketched in Figure 1, in
which 8, is the incident wave angle, B is the chamber width of the perforated-wall caisson,
and the y-axis is parallel to the breakwater. In Region 2 (—b < z < 0) the water depth h(z)
is a varying function of z. For z < ~b (Region 1) and 0 < z < B (Region 3), the water
depth is constant and equal to A; and hj, respectively.

The solution of the boundary value problem given by (2) - (4) may be constructed from
the particular solutions in each region of the fluid domain:

$1(z,y,2z) = {exp(iki(z + b)cos b1] — exp[—iki(z + b) cos 8]} exp(ixy) -

cosh kq(z + hy) .
__(—:-o_slﬁc—lTl_— + Z R, eXP[ﬂl,n(-’E + b)] GXP(‘X!/)Zl,n(hlyz) (8)
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Figure 1: Definition sketch.

$2(z,9,2) = D n(z)exp(ixy)Za,nlh2, 2) (9)
azn o
¢3(2,9,2) = D_ Tnexp(—Panz)exp(ixy)Zan(ha,2) (10)
a3,n
in which
Bimn=1/a%, +x% x =kjsin6; = kysinf; = constant (j = 1,2,3) (11)
If n = 0 (propagating mode), (7) and (11) yiéld
A = kj tanh(kjh;), Bjo = *ik;cos®; (12)

For ;0 we take — sign for the reflected wave in Region 1, while we need both + and —
for the waves inside the wave chamber (i.e., Region 3). Defining the reflection coefficient as
KR, Massel (1993) showed that

Ro =14 Kg = @o(-b) (13)

The potential ¢;(z,y, z) must satisfy the matching conditions which provide continuity

of pressure and horizontal velocity, normal to the vertical planes separating the fluid regions,
i.e.

h=gp P ooy m<i<0) (14)
_ v\ 9¢2 04 _ O¢3 -0

¢3—¢2+(£+;)Fx—, _37—8.1 (3—01 haSZSO) (15)
%:0 (z=B, —h3<2<0) (16)

In Eq. (15), £ is the length of the jet flowing through the perforated wall, which is usually
taken as the thickness of the wall, and 7 is the linearized dissipation coeflicient given by
Fugazza and Natale (1992) as
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_ 8ar W 5 4+ cosh 2k3hs (17)
7= W R T )2 £ OF 2kshs + sinh 2kshs

in which H,, = incident wave height at the wall; W = tan(k3B); P = tk3; C =1 - PW; r
= porosity of the wall; and

e o

is the dissipation coefficient at the perforated wall. C, is the contraction coefficient at the
perforated wall.

Substitution of (8) - (10) into the matching conditions (14) - (16) yield the following
boundary conditions at z = —b and z = 0 for the propagating wave mode (n = 0):

dcp(:l(z ) = i[2 — @o(—b)]k; cos b, (19)
- _ | 1 exp(—PB30,B) + exp(fs,0,B) 1y} dgo(0)
Pol0) = [ﬂs,o, exp(—Pa,0, B) ~ exp(fa,0, B) ¢ w] dz (20)

in which 83 0y = ik3 cos 03. The mathematical derivation of these boundary conditions is
omitted here because of its complexity and limited space.

Massel (1993) showed that in Region 2 the function @o(z) satisfies the foHowmg ordinary
differential equatlon

d? dg
<80 4 D) + E(x)po = 0 (21)
in which
_ G(khy) dh,
D(z) = e ds (22)
_ g2, B2k} { o (@1)2 (2 d*hz/dz?|
E(z) = k3+ pah2 Ryg dz + Reo h\ X (23)
In these equations,
1 2kohy )
o= g (1 b 2koh; (24)
kh 2 2T ]
- 11 - — 25
G(kh) T3 Fh(1 =77 [1 3T +T+kh(1—T2) (25)

in which T = tanh(kh). R(()},) and R((,?,) are complicated expressions which can be found in
the paper of Massel (1993).

The differential equation (21) with the boundary conditions (19) and (20) can be
solved using the finite-difference method. Using the forward-differencing for d@o(—b)/dz,
backward-differencing for d@o(0)/dz, and central-differencing for the derivatives in (21), the
problem (19) - (21) was approximated by a system of linear equations, AY = B, where A
is a tridiagonal band type matrix, Y is a column vector, and B is also a column vector,
The subroutines given in the book of Press et al. (1992) were used to solve this matrix
equation. In particular we are interested in @o(—b), from which the reflection coefficient
KRg is calculated using (13).
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Figure 2: Variation of reflection coefficients w.r.t. B /L.

3 Comparison with Other Theory and Experimental Re-
sults

For a perforated-wall caisson breakwater situating on a flat bed, Fugazza and Natale (1992)
showed that the resonance inside the wave chamber is important for wave reflection so that
the reflection becomes minimum when B/L = 0.25 in which L is the wave length. Figure 2
shows the variation of reflection coefficient with respect to B/L calculated by the theory of
Fugazza and Natale (1992) and the present theory. The porosity of the wall r = 0.25 was
used. The present theory agrees exactly with that of Fugazza and Natale (1992).

In order to see the effect of the porosity of the wall upon the reflection coefficient,
the contour plot of the reflection coefficient depending on the change of B/L and the
porosity 7 is presented in Figure 3. The reflection coefficient approaches to 1.0 (perfect
reflection) as 7 goes to either zero (solid wall) or unity (no perforated-wall), as it should do
so, and it becomes minimum when B/L = 0.25 and r = 0.25. This result corresponds to
other experimental results (personal communication with Dr. Shigeo Takahashi, Port and
Harbour Research Institute, Japan).

Finally, to examine the performance of the present theory for a perforated-wall caisson
breakwater mounted on a rubble foundation, the theory was compared against the exper-
imental data reported by Park et al. (1993), who carried out hydraulic experiments for
the reflection characteristics of perforated breakwaters with different types of perforated
wall, i.e., vertical slits, horizontal slits, and circular holes. The porosity of the wall was
0.33 for all the types of the walls. Figure 4 shows the comparison between the theory and
the experimental data. In the figure, L. denotes the wave length inside the wave chamber.
The theory slightly overpredicts the experimental data especially for a large wave height
condition (H = 0.1 m), and the value of B/L, for the minimum reflection coefficient in the
calculation is somewhat greater than that in the experiment.
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Figure 4: Comparison of reflection coefficients between theory and experimental data (£ =
thickness of porous wall).
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Figure 5: Comparison of reflection coefficients between theory and experimental data (£ =
five times thickness of porous wall).

In the previous calculation to produce Figure 4, the length of the jet £ was taken the
same as the thickness of the porous wall. Figure 5 is the results similar to Figure 4 when the
length of the jet £ was taken as five times the thickness of the porous wall. The agreement
between the theory and the experimental data is better than that in Figure 4, and the value
of B/ L, for the minimum reflection coefficient is about 0.2 in both theory and experiment.

4 Conclusion

Using the Galerkin-eigenfunction method, a model was developed that can calculate the
reflection coefficient from a perforated-wall caisson breakwater mounted on a rubble foun-
dation. For a breakwater situating on a flat bed, the results of the proposed model were
shown to exactly agree with the model developed by Fugazza and Natale (1992). For a
breakwater mounted on a rubble mound foundation, the present model was tested against
the hydraulic experimental data. The results show that the developed model is in reasonable
agreement with observations. The present model is more versatile than that of Fugazza and
Natale (1992) in that it can include the effect of rubble foundation and it can be applied
to the case in which the waves are incident obliquely to the breakwater, even though the
latter feature was not examined in this paper.

It was shown that a greater value of the length of the jet flowing through the porous
wall which is usually taken the same as the thickness of the wall gives better agreement with
the experimental data. It seems that the length of the jet should be related to the wave
characteristics such as wave height and length. A further study for this may be needed.
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