• Title/Summary/Keyword: perforated structures

Search Result 108, Processing Time 0.027 seconds

A modal approach for the efficient analysis of a bionic multi-layer sound absorption structure

  • Wang, Yonghua;Xu, Chengyu;Wan, Yanling;Li, Jing;Yu, Huadong;Ren, Luquan
    • Steel and Composite Structures
    • /
    • 제21권2호
    • /
    • pp.249-266
    • /
    • 2016
  • The interest of this article lies in the proposition of using bionic method to develop a new sound absorber and analyze the efficient of this absorber in a ski cabin. Inspired by the coupling absorption structure of the skin and feather of a typical silent flying bird - owl, a bionic coupling multi-layer structure model is developed, which is composed of a micro-silt plate, porous fibrous material and a flexible micro-perforated membrane backed with airspace. The finite element simulation method with ACTRAN is applied to calculate the acoustic performance of the multi-layer absorber, the vibration modal of the ski cabin and the sound pressure level (SPL) near the skier's ears before and after pasting the absorber at the flour carpet and seats in the cabin. As expected, the SPL near the ears was significantly reduced after adding sound-absorbing material. Among them, the model 2 and model 5 showed the best sound absorption efficiency and the SPL almost reduced 5 dB. Moreover, it was most effctive for the SPL reduction with full admittance configuration at both the carpet and the seats, and the carpet contribution seems to be predominant.

지게차 충돌 위치 및 보관물류 분포에 따른 선반구조물의 거동특성분석 (Behavioral Characteristics Investigation of Rack Structure Depending on Forklift Impact Scenarios and Storage Distributions)

  • 옥승용;권오용;백신원
    • 한국안전학회지
    • /
    • 제28권6호
    • /
    • pp.49-56
    • /
    • 2013
  • The statistics of recent accidents in warehouses show that a heavy toll of lives were produced by various accidents, e.g. collision, overturn, fall, slip, exposure to harmful substances or environments, etc. Of significant concern amongst them is the collision, especially the collision between forklift and storage rack structure. Accordingly, this study focuses on behavioral characteristics of rack structure subjected to dynamic impact loading of a forklift. For this purpose, time-domain response analysis has been performed on a standard 2-bay six-story rack structure consisting of columns, beams and bracing members with perforated open section. In order to investigate the most critical scenario, the impact loads are applied in both down-aisle and cross-aisle directions, and the impact locations are also varied along the shelves of the palettes. In order to deal with storage distributions, three types of rack structures are further taken into account: original empty rack structure with no storage, half-loaded rack structure and fully-loaded rack structure. The numerical simulation results demonstrate that the dynamic characteristics of the rack structure are significantly dependent on the distribution of the storage goods and its natural period varies from 0.24sec to 1.06sec, approximately 4.4 times. Further, the parametric studies show that the forklift impact is most critical to the safety of the rack structure when it collides either at the base or at the top of the rack structure.

경사판 침전지의 수리학적 특성에 대한 구조물의 영향 (Effects of Various Baffles on Hydraulic Characteristics in the Sedimentation Basin with Inclined Plate Settler)

  • 유명진;김현철;명규남;류성호;조항문
    • 상하수도학회지
    • /
    • 제18권4호
    • /
    • pp.427-436
    • /
    • 2004
  • Sedimentation is one of the most common and important units in conventional water treatment plants. Structure such as various baffle walls and inclined plate settler may be obstacles to the horizontal flow when it is poorly designed. Therefore, the effects of these structures on characteristics of hydraulic flow must be evaluated to improve the settling efficiency of the floc. The hydraulic characteristic of the four sedimentations at the three real WTPs (water treatment plants), which have different structural properties respectively inside the settling basin, were investigated by tracer (fluoride) test. The inclined plate settler installed inside settling basin caused a undesirable impact on horizontal flow and produced dead zone. Intermediate baffle and solid baffle wall under the inclined plate settler at GE plant help to minimize the formation of density currents and flow short circuiting. However, installing perforated baffle under the inclined plate settler at other plants could not induce even distribution of flow. NaF used as a tracer was recovered more than 90% at investigated all basin. Morill index ($t_{90}/t_{10}$), Modal index ($t_p/T-HRT$) and short-circuiting index ($[M-HRT-t_p/M-HRT$) were determined from tracer test results performed at three WTPs. Those indices ranged 2.99~3.45, 0.44~0.72 and 0.23~0.47, respectively.

Ballistic impact response of Kevlar Composites with filled epoxy matrix

  • Pekbey, Yeliz;Aslantas, Kubilay;Yumak, Nihal
    • Steel and Composite Structures
    • /
    • 제24권2호
    • /
    • pp.191-200
    • /
    • 2017
  • Impact resistance and weight are important features for ballistic materials. Kevlar fibres are the most widely reinforcement for military and civil systems due to its excellent impact resistance and high strength-to-weight ratio. Kevlar fibres or spectra fiber composites are used for designing personal body armour to avoid perforation. In this study, the ballistic impact behaviour of Kevlar/filled epoxy matrix is investigated. Three different fillers, nanoclay, nanocalcite and nanocarbon, were used in order to increase the ballistic impact performance of Kevlar-epoxy composite at lower weight. The filler, nanoclay and nanocalcite, content employed was 1 wt.% and 2 of the epoxy resin-hardener mixture while the nanocarbon were dispersed into the epoxy system in a 0.5%, 1% and 2% ratio in weight relating to the epoxy matrix. Specimens were produced by a hand lay-up process. The results obtained from ballistic impact experiments were discussed in terms of damage and perforation. The experimental tests revealed a number of damage mechanisms for composite laminated plates. In the ballistic impact test, it was observed whether the target was perforated completely penetrated at the back or not. The presence of small amounts of nanoclay and nanocalcite dispersed into the epoxy system improved the impact properties of the Kevlar/epoxy composites. The laminates manufactured with epoxy resin filled by 1 wt.% of nanoclay and 2 wt% nanocalcite showed the best performance in terms of ballistic performance. The addition of nanocarbon reduced ballistic performance of Kevlar-epoxy composites when compared the results obtained for laminates with 0% nanoparticles concentration.

Anaysis of Fe in Seepage Water and Precipitates around a Hydrothermal Alteration Zone

  • Yun, Hyun-Seok;Moon, Seong-Woo;Lee, Jin-Kook;Jeong, Gyo-Cheol;Seo, Yong-Seok
    • 지질공학
    • /
    • 제27권3호
    • /
    • pp.345-351
    • /
    • 2017
  • Acid drainage in civil engineering structures such as tunnels may lead to the deposition of precipitates that clog drainage channels and pipework. In evaluating acid drainage, the Fe content of water and precipitates, indicated by reddish brown coloration of rock surfaces, rivers, and soils, may be an important factor. In this study, acid drainage was evaluated by analyzing the Fe content of reddish brown seepage water that occurred in part of a tunnel. Geological investigations around the tunnel revealed a hydrothermal alteration zone cutting the bedrock, and cropping out in the upper parts of the tunnel. Analysis of drillcore revealed many fracture zones and veins. Inductively coupled plasma spectrophotometric analyses of water, precipitates, and soil samples, collected in the seepage water zone and around the tunnel, were conducted to evaluate acid drainage. The Fe content of seepage water in the tunnel was 0.030-0.333 mg/kg, which is 2-22 times higher than in local groundwater. The Fe content of precipitates in the tunnel was 165,403-301,051 mg/kg, similar to the 206,167-422,964 mg/kg content of drillcore from the hydrothermal alteration zone located above the tunnel. It is concluded that the seepage water is derived from Fe-containing acid drainage flowing in perforated tunnel drainpipes along the fracture zones and veins around the hydrothermal alteration zone.

Direct shear behavior of concrete filled hollow steel tube shear connector for slim-floor steel beams

  • Hosseinpour, Emad;Baharom, Shahrizan;Badaruzzaman, Wan Hamidon W.;Shariati, Mahdi;Jalali, Abdolrahim
    • Steel and Composite Structures
    • /
    • 제26권4호
    • /
    • pp.485-499
    • /
    • 2018
  • In this paper, a hollow steel tube (HST) shear connector is proposed for use in a slim-floor system. The HST welded to a perforated steel beam web and embedded in concrete slab. A total of 10 push-out tests were conducted under static loading to investigate the mechanical behavior of the proposed HST connector. The variables were the shapes (circular, square and rectangular) and sizes of hollow steel tubes, and the compressive strength of the concrete. The failure mode was recorded as: concrete slab compressive failure under the steel tube and concrete tensile splitting failure, where no failure occurred in the HST. Test results show that the square shape HST in filled via concrete strength 40 MPa carried the highest shear load value, showing three times more than the reference specimens. It also recorded less slip behavior, and less compressive failure mode in concrete underneath the square hollow connector in comparison with the circular and rectangular HST connectors in both concrete strengths. The rectangular HST shows a 20% higher shear resistance with a longer width in the load direction in comparison with that in the smaller dimension. The energy absorption capacity values showed 23% and 18% improvements with the square HST rather than a headed shear stud when embedded in concrete strengths of 25 MPa and 40 MPa, respectively. Moreover, an analytical method was proposed and predicts the shear resistance of the HST shear connectors with a standard deviation of 0.14 considering the shape and size of the connectors.

Steady wind force coefficients of inclined stay cables with water rivulet and their application to aerodynamics

  • Matsumoto, Masaru;Yagi, Tomomi;Sakai, Seiichiro;Ohya, Jun;Okada, Takao
    • Wind and Structures
    • /
    • 제8권2호
    • /
    • pp.107-120
    • /
    • 2005
  • The quasi-steady approaches to simulate the wind induced vibrations of inclined cables, especially on the rain-wind induced vibration, have been tried by many researchers. However, the steady wind force coefficients used in those methods include only the effects of water rivulet, but not the axial flow effects. The problem is the direct application of the conventional techniques to the inclined cable aerodynamics. Therefore, in this study, the method to implement the axial flow effects in the quasi-steady theory is considered and its applicability to the inclined cable aerodynamics is investigated. Then, it becomes clear that the perforated splitter plate in the wake of non-yawed circular cylinder can include the effects of axial flow in the steady wind force coefficients for inclined cables to a certain extent. Using the lateral force coefficients measured in this study, the quasi-steady theory may explain the wind induced instabilities of the inclined cables only in the relatively high reduced wind velocity region. When the Scruton number is less than around 40, the high speed vortex-induced vibration occurs around the onset wind velocity region of the galloping, and then, the quasi-steady approach cannot be applied for estimating the response of wind-induced vibration of inclined cable.

Shape anisotropy and magnetic properties of Co/Ni anti-dot arrays

  • Deshpande, N.G.;Seo, M.S.;Kim, J.M.;Lee, S.J.;Lee, Y.P.;Rhee, J.Y.;Kim, K.W.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.444-444
    • /
    • 2011
  • Recently, patterned magnetic films and elements attract a wide interest due to their technological potentials in ultrahigh-density magnetic recording and spintronic devices. Among those patterned magnetic structures, magnetic anti-dot patterning induces a strong shape anisotropy in the film, which can control the magnetic properties such as coercivity, permeability, magnetization reversal process, and magneto-resistance. While majority of the previous works have been concentrated on anti-dot arrays with a single magnetic layer, there has been little work on multilayered anti-dot arrays. In this work, we report on study of the magnetic properties of bilayered anti-dot system consisting of upper perforated Co layer of 40 nm and lower continuous Ni layer of 5 nm thick, fabricated by photolithography and wet-etching processes. The magnetic hysteresis (M-H) loops were measured with a superconducting-quantum-interference-device (SQUID) magnetometer (Quantum Design: MPMS). For comparison, investigations on continuous Co thin film and single-layer Co anti-dot arrays were also performed. The magnetic-domain configuration has been measured by using a magnetic force microscope (PSIA: XE-100) equipped with magnetic tips (Nanosensors). An external electromagnet was employed while obtaining the MFM images. The MFM images revealed well-defined periodic domain networks which arise owing to the anisotropies such as magnetic uniaxial anisotropy, configurational anisotropy, etc. The inclusion of holes in a uniform magnetic film and the insertion of a uniform thin Ni layer, drastically affected the coercivity as compared with single Co anti-dot array, without severely affecting the saturation magnetization ($M_s$). The observed changes in the magnetic properties are closely related to the patterning that hinders the domain-wall motion as well as to the magneto-anisotropic bilayer structure.

  • PDF

2차원 흐름 중에 놓인 틈새를 갖는 수직벽 후류 특성에 관한 실험적 연구 (Experimental Study on the Wake Characteristics of a Perforated Vertical Wall with Gap in the 2-Dimensional Flow)

  • 조대환;오경근;이경우
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2005년도 추계학술대회 논문집
    • /
    • pp.135-140
    • /
    • 2005
  • 항만과 해역에 설치되는 수직벽의 일례로 육상 및 유입되는 오염수의 오염 유출 방지를 위한 차수기능을 갖는 차수벽과 교량이나 댐, 갑문 둥의 하천 또는 해양구조물을 축조하는 동안 물이 들어오는 것을 방지하기 위하여 임시로 설치되는 가물막이(cofferdam)벽 등이 있다 이들 차단벽의 구조역학적인 설계 인자 중 유입수 유동 특성과 설치 지역의 지반 특성이 중요한 의미를 가진다고 판단된다. 본 연구에서는 이러한 수직 차단벽 주위의 유체역학적 특성 파악의 일례로 수직벽의 하단에 틈새를 갖는 파공(perforation)이 발생하였을 때 이들 파공의 개도율 변화에 따른 유동특성을 고찰하는 하나의 방안으로 입자영상유속계(Particle Image Velocimetry)를 이용하여 수직벽 후류 특성을 실험적으로 고찰하였다.

  • PDF

Numerical study on the structural performance of corrugated low yield point steel plate shear walls with circular openings

  • Shariati, Mahdi;Faegh, Shervin Safaei;Mehrabi, Peyman;Bahavarnia, Seyedmasoud;Zandi, Yousef;Masoom, Davood Rezaee;Toghroli, Ali;Trung, Nguyen-Thoi;Salih, Musab NA
    • Steel and Composite Structures
    • /
    • 제33권4호
    • /
    • pp.569-581
    • /
    • 2019
  • Corrugated steel plate shear wall (CSPSW) as an innovative lateral load resisting system provides various advantages in comparison with the flat steel plate shear wall, including remarkable in-plane and out-of-plane stiffnesses and stability, greater elastic shear buckling stress, increasing the amount of cumulative dissipated energy and maintaining efficiency even in large story drifts. Employment of low yield point (LYP) steel web plate in steel shear walls can dramatically improve their structural performance and prevent early stage instability of the panels. This paper presents a comprehensive structural performance assessment of corrugated low yield point steel plate shear walls having circular openings located in different positions. Accordingly, following experimental verification of CSPSW finite element models, several trapezoidally horizontal CSPSW (H-CSPSW) models having LYP steel web plates as well as circular openings (for ducts) perforated in various locations have been developed to explore their hysteresis behavior, cumulative dissipated energy, lateral stiffness, and ultimate strength under cyclic loading. Obtained results reveal that the rehabilitation of damaged steel shear walls using corrugated LYP steel web plate can enhance their structural performance. Furthermore, choosing a suitable location for the circular opening regarding the design purpose paves the way for the achievement of the shear wall's optimal performance.