• 제목/요약/키워드: perceptron

검색결과 832건 처리시간 0.023초

선형예측계수와 뇌파의 변화를 이용한 신경회로망 기반 운전자의 졸음 감지 시스템 (Neural-network-based Driver Drowsiness Detection System Using Linear Predictive Coding Coefficients and Electroencephalographic Changes)

  • 정의필;한형섭
    • 융합신호처리학회논문지
    • /
    • 제13권3호
    • /
    • pp.136-141
    • /
    • 2012
  • 운전 중 운전자의 졸음은 교통 사망사고를 일으키는 중요한 요인이며 음주운전보다도 더 위험할 수 도 있다. 이러한 이유로 운전자의 졸음을 판별하고 경고하는 시스템 개발이 최근에 매우 중요한 이슈로 떠올랐다. 그중에서도 졸음과 가장 밀접한 관련이 있는 생체 신호인 뇌파 (Electroencephalogram, EEG)와 안구전도 (Electrooculogram, EOG)를 분석하는 연구가 주류를 이루고 있다. 본 논문에서는 실험 프로토콜에 의거하여 측정된 뇌파를 주파수별로 분석하여 운전자의 상태별 뇌파 데이터베이스를 구축하고 선형예측(Linear Predictive coding, LPC) 계수를 특징벡터로 한 신경회로망 기반 운전자 졸음 감지 시스템을 제안한다. 실험결과로 졸음의 뇌파분석에서 알파파가 감소하며 세타파가 증가하는 추세를 보였으며, LPC 계수가 각성, 졸음 및 수면상태의 특징을 잘 반영하였다. 특히 제안한 시스템은 적은 샘플(250ms)을 가지고도 96.5%라는 높은 분류 결과를 얻어 짧은 순간에 일어날 수 있는 운전 시 돌발 상황을 실시간으로 검출 가능성을 확인하였다.

신경회로망을 이용한 인쇄체 한글 문자의 인식 (The Recognition of Printed Korean Characters by a Neural Network)

  • 김상우;전윤호;최종호
    • 대한전자공학회논문지
    • /
    • 제27권2호
    • /
    • pp.65-72
    • /
    • 1990
  • 이 논문에서는 인쇄체 한글문자 인식에 있어서 신경회로망의 적용가능성을 알아 보았다. 한글 문자수의 과다와 그들 사이의 유사성, 많은 입력 영상 데이타 등으로 인하여 신경회로망을 한글인식에 적용시키는데는 많은 난점이 따른다. 한글 문자의 이진영상은 신경회로망의 입력으로 사용하기에는 그 데이타 수가 너무 많으므로 입력 영상으로부터 DC 성분을 추출하여 이것을 신경회로망의 입력으로 사용하기 위한 전처리과정을 두었다. 출력층은 한글의 특성에 맞도록 구성하였다. 한글인식에 도입된 신경회로망은 다층인식자이고, 적용된 훈련방법은 BEP 알고리듬을 한글인식에 적절하도록 변형시킨 형태이다. 이 방법을 통하여 정위치에 있는 2,300개 이상의 문자를 인식할 수 있었다. 이 결과로부터 신경회로망을 이용한 인쇄체 한글문자 인식은 적절한 방법임을 알 수 있다.

  • PDF

인공 신경망을 이용한 광대역 과정의 피로 손상 모델 개발 (Development of a Fatigue Damage Model of Wideband Process using an Artificial Neural Network)

  • 김호성;안인규;김유일
    • 대한조선학회논문집
    • /
    • 제52권1호
    • /
    • pp.88-95
    • /
    • 2015
  • For the frequency-domain spectral fatigue analysis, the probability density function of stress range needs to be estimated based on the stress spectrum only, which is a frequency domain representation of the response. The probability distribution of the stress range of the narrow-band spectrum is known to follow the Rayleigh distribution, however the PDF of wide-band spectrum is difficult to define with clarity due to the complicated fluctuation pattern of spectrum. In this paper, efforts have been made to figure out the links between the probability density function of stress range to the structural response of wide-band Gaussian random process. An artificial neural network scheme, known as one of the most powerful system identification methods, was used to identify the multivariate functional relationship between the idealized wide-band spectrums and resulting probability density functions. To achieve this, the spectrums were idealized as a superposition of two triangles with arbitrary location, height and width, targeting to comprise wide-band spectrum, and the probability density functions were represented by the linear combination of equally spaced Gaussian basis functions. To train the network under supervision, varieties of different wide-band spectrums were assumed and the converged probability density function of the stress range was derived using the rainflow counting method and all these data sets were fed into the three layer perceptron model. This nonlinear least square problem was solved using Levenberg-Marquardt algorithm with regularization term included. It was proven that the network trained using the given data set could reproduce the probability density function of arbitrary wide-band spectrum of two triangles with great success.

다양한 합성곱 신경망 방식을 이용한 모바일 기기를 위한 시작 단어 검출의 성능 비교 (Performance comparison of wake-up-word detection on mobile devices using various convolutional neural networks)

  • 김상홍;이보원
    • 한국음향학회지
    • /
    • 제39권5호
    • /
    • pp.454-460
    • /
    • 2020
  • 음성인식 기능을 제공하는 인공지능 비서들은 정확도가 뛰어난 클라우드 기반의 음성인식을 통해 동작한다. 클라우드 기반의 음성인식에서 시작 단어 인식은 대기 중인 기기를 활성화하는 데 중요한 역할을 한다. 본 논문에서는 공개 데이터셋인 구글의 Speech Commands 데이터셋을 사용하여 스펙트로그램 및 멜-주파수 캡스트럼 계수 특징을 입력으로 하여 모바일 기기에 대응한 저 연산 시작 단어 검출을 위한 합성곱 신경망의 성능을 비교한다. 본 논문에서 사용한 합성곱 신경망은 다층 퍼셉트론, 일반적인 합성곱 신경망, VGG16, VGG19, ResNet50, ResNet101, ResNet152, MobileNet이며, MobileNet의 성능을 유지하면서 모델 크기를 1/25로 줄인 네트워크도 제안한다.

다층퍼셉트론의 은닉노드 근사화를 이용한 개선된 오류역전파 학습 (Modified Error Back Propagation Algorithm using the Approximating of the Hidden Nodes in Multi-Layer Perceptron)

  • 곽영태;이영직;권오석
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제28권9호
    • /
    • pp.603-611
    • /
    • 2001
  • 본 논문은 학습 속도가 계층별 학습처럼 빠르며, 일반화 성능이 우수한 학습 방법을 제안한다. 제안한 방법은 최소 제곡법을 통해 구한 은닉층의 목표값을 이용하여 은닉층의 가중치를 조정하는 방법으로, 은닉층 경사 벡터의 크기가 작아 학습이 지연되는 것을 막을 수 있다. 필기체 숫자인식 문제를 대상으로 실험한 결과, 제안한 방법의 학습 속도는 오류역전파 학습과 수정된 오차 함수의 학습보다 빠르고, Ooyen의 방법과 계층별 학습과는 비슷했다. 또한, 일반화 성능은 은닉노드의 수에 관련없이 가장 좋은 결과를 얻었다. 결국, 제안한 방법은 계층별 학습의 학습 속도와 오류역전파 학습과 수정된 오차 함수의 일반화 성능을 장점으로 가지고 있음을 확인하였다.

  • PDF

신경망을 이용한 MODIS NDVI의 자동화 변화탐지 기법 (Automatic Change Detection of MODIS NDVI using Artificial Neural Networks)

  • 정명희
    • 전자공학회논문지CI
    • /
    • 제49권2호
    • /
    • pp.83-89
    • /
    • 2012
  • 지구의 중요한 천연자원인 산림을 포함한 자연 식생환경은 지난 1세기 동안 많은 변화를 겪으며 기후에도 영향을 미치게 되어 현재 지구적 차원의 관심 속에서 다양한 연구가 진행되고 있다. 원격탐사는 분광적 특성을 이용하여 식생의 특성을 탐지할 수 있어 식생자원을 모니터링하는데 매우 효율적인 수단이다. 이러한 연구에서는 보통 원격탐사 측정을 분석하여 관찰된 화소가 식생을 포함하고 있는 정도를 나타내는 식생지수가 사용되고 있는데 NDVI가 이중 가장 많이 사용되는 식생지수이다. 본 논문에서는 MODIS NDVI 시계열 자료를 이용하여 자동으로 식생의 변화를 탐지해 가는 방법론이 제안되어 있다. 변화탐지를 위해 비모수 방법의 신경망 모형이 사용되었고 특성벡터로는 한 화소에서 다중 시기의 NDVI 차이와 더불어 NDVI 시계열 자료의 시간상의 관계가 함께 고려될수 있도록 제안되었다. 사용된 모형의 테스트를 위해 2006년부터 2011년까지 한반도 지역에 대한 MODIS MYD13Q1 자료가 사용되었다.

모노스태틱 RCS와 바이스태틱 RCS의 표적 구분 성능 분석 (Performance Comparison for Radar Target Classification of Monostatic RCS and Bistatic RCS)

  • 이성준;최인식
    • 한국전자파학회논문지
    • /
    • 제21권12호
    • /
    • pp.1460-1466
    • /
    • 2010
  • 본 논문은 바이스태틱 RCS와 모노스태틱 RCS를 이용하여 각각 표적 구분 실험을 수행하고 그 성능을 비교 분석하였다. 모노스태틱 및 바이스태틱 RCS로부터 특성을 추출하기 위하여 시간-주파수 영역 해석법인 STFT와 CWT를 이용하였으며, 다중 퍼셉트론 신경망을 구분기로 이용하였다. 실험 결과, 모노스태틱과 바이스태틱 RCS 모두 CWT가 STFT보다 더 나은 구분 성능을 보여주었다. 또한, STFT에서는 바이스태틱 RCS를 이용했을 때, CWT에서는 모노스태틱 RCS를 이용하였을 때 대체적으로 더 좋은 성능을 나타내었다. 결과적으로 본 논문을 통하여 바이스태틱 RCS도 모노스태틱 RCS처럼 표적 구분에 똑같이 적용할 수 있다는 것을 알 수 있었다.

원격 카메라 로봇 제어를 위한 동적 제스처 인식 (Dynamic Gesture Recognition for the Remote Camera Robot Control)

  • 이주원;이병로
    • 한국정보통신학회논문지
    • /
    • 제8권7호
    • /
    • pp.1480-1487
    • /
    • 2004
  • 본 연구에서는 원격 카메라 로봇 제어를 위한 새로운 제스처 인식 방법을 제안하였다. 제스처 인식의 전처리 단계인 동적 제스처의 세그먼테이션이며, 이를 위한 기존의 방법은 인식 대상에 대한 많은 칼라정보를 필요로 하고, 인식단계에서는 각각 제스처에 대한 많은 특징벡터들을 요구하는 단점이 있다. 이러한 단점을 개선하기 위해, 본 연구에서는 동적 제스처의 세그먼테이션을 위한 새로운 Max-Min 탐색법과 제스처 특징 추출을 위한 평균 공간 사상법과 무게중심법, 그리고 인식을 위한 다층 퍼셉트론 신경망의 구조 둥을 제안하였다 실험에서 제안된 기법의 인식율이 90%이상으로 나타났으며, 이 결과는 원격 로봇 제어를 위한 휴먼컴퓨터 인터페이스(HCI : Human Compute. Interface)장치로 사용 가능함을 보였다.

RBFN을 이용한 Bayesian Equalizer에서의 비선형 다층 결합 기법 (Nonlinear Multilayer Combining Techniques in Bayesian Equalizer Using Radial Basis Function Network)

  • 최수용;고균병;홍대식
    • 한국통신학회논문지
    • /
    • 제28권5C호
    • /
    • pp.452-460
    • /
    • 2003
  • 본 논문에서는 optimal Bayesian equalization solution인 RBF(radial basis function)를 이용한 등화기 (RE)의 구조를 보다 단순화하고, 비선형 왜곡 등의 심각한 정보 신호의 손상에 대한 보상 능력을 향상시키기 위하여 비선형 다층 결합을 갖는 RBF측 이용한 등화기(RNE)를 새로이 제안한다. 기존의 RE는 RBF로 구성된 은닉층의 출력 값을 선형 결합하여 등화기 출력을 얻는다. 이와 달리 새로이 제안하는 RNE는 기존의 RE에서 RBF로 구성된 은닉층의 출력 값에 대한 결합 기법으로 perceptron을 이용한 비선형 다층 결합을 사용한다. 제안한 equalizer를 결정궤환 방식이 있는 경우와 없는 경우의 등화기로 각각 구현한다. 실험 결과 제안한 등화기는 선형 간섭이 존재하는 디지털 통신 시스템과 비선형 왜곡이 존재하는 자기기록 시스템에서보다 간단한 구조로 기존의 optimal Bayesian 등화기와 거의 같거나 우수한 비트 오류 화률 성능 및 MSE(men squared error) 수렴 특성을 나타내었다.

A Computational Intelligence Based Online Data Imputation Method: An Application For Banking

  • Nishanth, Kancherla Jonah;Ravi, Vadlamani
    • Journal of Information Processing Systems
    • /
    • 제9권4호
    • /
    • pp.633-650
    • /
    • 2013
  • All the imputation techniques proposed so far in literature for data imputation are offline techniques as they require a number of iterations to learn the characteristics of data during training and they also consume a lot of computational time. Hence, these techniques are not suitable for applications that require the imputation to be performed on demand and near real-time. The paper proposes a computational intelligence based architecture for online data imputation and extended versions of an existing offline data imputation method as well. The proposed online imputation technique has 2 stages. In stage 1, Evolving Clustering Method (ECM) is used to replace the missing values with cluster centers, as part of the local learning strategy. Stage 2 refines the resultant approximate values using a General Regression Neural Network (GRNN) as part of the global approximation strategy. We also propose extended versions of an existing offline imputation technique. The offline imputation techniques employ K-Means or K-Medoids and Multi Layer Perceptron (MLP)or GRNN in Stage-1and Stage-2respectively. Several experiments were conducted on 8benchmark datasets and 4 bank related datasets to assess the effectiveness of the proposed online and offline imputation techniques. In terms of Mean Absolute Percentage Error (MAPE), the results indicate that the difference between the proposed best offline imputation method viz., K-Medoids+GRNN and the proposed online imputation method viz., ECM+GRNN is statistically insignificant at a 1% level of significance. Consequently, the proposed online technique, being less expensive and faster, can be employed for imputation instead of the existing and proposed offline imputation techniques. This is the significant outcome of the study. Furthermore, GRNN in stage-2 uniformly reduced MAPE values in both offline and online imputation methods on all datasets.