• Title/Summary/Keyword: percent strain

Search Result 196, Processing Time 0.027 seconds

Vibration and instability of nanocomposite pipes conveying fluid mixed by nanoparticles resting on viscoelastic foundation

  • Natanzi, Abolfazl Jafari;Jafari, Gholamreza Soleimani;Kolahchi, Reza
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.569-582
    • /
    • 2018
  • In this study, nonlinear vibration and stability of a polymeric pipe reinforced by single-walled carbon naotubes (SWCNTs) conveying fluid-nanoparticles mixture flow is investigated. The Characteristics of the equivalent composite are determined using Mori-Tanaka model considering agglomeration effects. The surrounding elastic medium is simulated by orthotropic visco-Pasternak medium. Employing nonlinear strains-displacements, stress-strain energy method the governing equations were derived using Hamilton's principal. Differential quadrature method (DQM) is used for obtaining the frequency and critical fluid velocity. The influence of volume percent of SWCNTs, agglomeration, geometrical parameters of pipe, viscoelastic foundation and fluid velocity are shown on the frequency and critical fluid velocity of pipe. Results showed the increasing volume percent of SWCNTs leads to higher frequency and critical fluid velocity.

Dependence of superconductivity on the crystallinity of Nb films on Si wafers

  • Choi, Joonyoung;Kim, Chang-Duk;Jo, Younjung
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.1-5
    • /
    • 2021
  • Among elemental metals, niobium (Nb) has the highest superconducting transition temperature (Tc) at ambient pressure. Thus, Nb films have been used in superconducting electronics and radio frequency cavity applications. In this study, the depositional factors determining the crystallinity and Tc of Nb films were investigated. An Nb film grown at a sputtering temperature of 240℃ exhibited the maximum crystallinity of Nb and the minimum crystallinity of niobium oxide. X-ray photoelectron spectroscopy confirmed a maximum atomic percent of niobium and a minimum atomic percent of oxygen. A sputtering power of 210 W and a sputtering time of 50 min were the optimal conditions for Nb deposition, and the Tc of the optimized film (9.08 K) was close to that of bulk Nb (9.25 K). Transmission electron microscopy images of the thick film directly confirmed the removal of the typical in-plane compressive strain in the (110) plane caused by residual stress.

Dynamic analysis of concrete column reinforced with Sio2 nanoparticles subjected to blast load

  • Azmi, Masoud;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Advances in concrete construction
    • /
    • v.7 no.1
    • /
    • pp.51-63
    • /
    • 2019
  • The project focuses on the dynamic analysis of concrete beams reinforced with silica-nanoparticles under blast loading. The structure is located at two boundary conditions. The equivalent composite properties are determined using Mori-Tanak model. The structure is simulated with sinusoidal shear deformation theory. Employing nonlinear strains-displacements, stress-strain, the energy equations of beam were obtained and using Hamilton's principal, the governing equations were derived. Using differential quadrature methods (DQM) and Newmark method, the dynamic deflection of the structure is obtained. The influences of volume percent and agglomeration of silica nanoparticles, geometrical parameters of beam, boundary condition and blast load on the dynamic deflection were investigated. Results showed that with increasing volume percent of silica nanoparticles, the dynamic deflection decreases.

Buckling analysis of nanocomposite plates coated by magnetostrictive layer

  • Tabbakh, Moein;Nasihatgozar, Mohsen
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.743-751
    • /
    • 2018
  • In this project, buckling response of polymeric plates reinforced with carbon nanotubes (CNTs) and coated by magnetostrictive layer was studied. The equivalent nanocomposite properties are determined using Mori-Tanak model considering agglomeration effects. The structure is simulated with first order shear deformation theory (FSDT). Employing strains-displacements, stress-strain, the energy equations of the structure are obtained. Using Hamilton's principal, the governing equations are derived considering the coupling of mechanical displacements and magnetic field. Using Navier method, the buckling load of the sandwich structure is obtained. The influences of volume percent and agglomeration of CNTs, geometrical parameters and magnetic field on the buckling load are investigated. Results show that with increasing volume percent of CNTs, the buckling load increases. In addition, applying magnetic field, increases the frequency of the sandwich structure.

Buckling analysis of concrete plates reinforced by piezoelectric nanoparticles

  • Taherifar, Reza;Mahmoudi, Maryam;Nasr Esfahani, Mohammad Hossein;Khuzani, Neda Ashrafi;Esfahani, Shabnam Nasr;Chinaei, Farhad
    • Computers and Concrete
    • /
    • v.23 no.4
    • /
    • pp.295-301
    • /
    • 2019
  • In this paper, buckling analyses of composite concrete plate reinforced by piezoelectric nanoparticles is studied. The Halphin-Tsai model is used for obtaining the effective material properties of nano composite concrete plate. The nano composite concrete plate is modeled by Third order shear deformation theory (TSDT). The elastic medium is simulated by Winkler model. Employing nonlinear strains-displacements, stress-strain, the energy equations of concrete plate are obtained and using Hamilton's principal, the governing equations are derived. The governing equations are solved based on Navier method. The effect of piezoelectric nanoparticles volume percent, geometrical parameters of concrete plate and elastic foundation on the buckling load are investigated. Results showed that with increasing Piezoelectric nanoparticles volume percent, the buckling load increases.

Buckling analysis of plates reinforced by Graphene platelet based on Halpin-Tsai and Reddy theories

  • Javani, Rasool;Bidgoli, Mahmood Rabani;Kolahchi, Reza
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.419-426
    • /
    • 2019
  • In this paper, buckling analyses of composite plate reinforced by Graphen platelate (GPL) is studied. The Halphin-Tsai model is used for obtaining the effective material properties of nano composite plate. The nano composite plate is modeled by Third order shear deformation theory (TSDT). The elastic medium is simulated by Winkler model. Employing nonlinear strains-displacements, stress-strain, the energy equations of plate are obtained and using Hamilton's principal, the governing equations are derived. The governing equations are solved based on Navier method. The effect of GPL volume percent, geometrical parameters of plate and elastic foundation on the buckling load are investigated. Results showed that with increasing GPLs volume percent, the buckling load increases.

Analytical solution of buckling problem in plates reinforced by Graphene platelet based on third order shear deformation theory

  • Zhou, Linyun;Najjari, Yasaman
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.725-734
    • /
    • 2022
  • In this paper, buckling analyses of nanocomposite plate reinforced by Graphen platelet (GPL) is studied. The Halphin-Tsai model is used for obtaining the effective material properties of nanocomposite plate. The nanocomposite plate is modeled by Third order shear deformation theory (TSDT). The elastic medium is simulated by Winkler model. Employing relations of strains-displacements and stress-strain, the energy equations of the plate are obtained and using Hamilton's principle, the governing equations are derived. The governing equations are solved based on analytical solution. The effect of GPL volume percent, geometrical parameters of plate and elastic foundation on the buckling load are investigated. Results show that with increasing GPLs volume percent, the buckling load increases. In addition, elastic medium can enhance the values of buckling load significantly.

Evaluation on Mechanical Properties of High Strength Light-Weight Concrete with Elevated Temperature and loading (하중조건과 고온에 의한 고강도 경량 콘크리트의 역학적 특성 평가)

  • Kim, Gyu-Yong;Kim, Young-Sun;Choe, Gyeong-Cheol;Park, Hyun-Gil;Lee, Tae-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.723-730
    • /
    • 2011
  • It is very important to experimentally evaluate concrete behavior at elevated temperature because aggregates make up approximately 80 percent of volume in concrete. In this study, an experiment to evaluate mechanical properties of normal weight and light weight concrete of 60 MPa was conducted. Based on loading level of 0, 20 and 40 percent, the tests of 28 days compressive strength, elastic modulus, thermal strain, total strain, and transient creep using ${\phi}100{\times}200mm$ cylindrical specimens at elevated temperature were performed. Then, the results were compared with CEB (Committes Euro-international du Beton) model code. The results showed that thermal strain of light weight concrete was smaller than normal weight concrete. Also, the results showed that compressive strength of light concrete at $700^{\circ}C$ was higher than normal weight concrete and CEB code, similar to that obtained at ambient temperature. Transient creep developed from loading at a critical temperature of $500^{\circ}C$ caused the concrete strains to change from expansion to compression. The transient creep test result showed that internal force was high when the ratio of shrinkage between concrete and aggregate was more influential than thermal expansion.

Studies on Screening and Isolation of Esterase Inhibitors from Soil Microorganisms (II). Isolation of Inhibitors and Associated Lipids from Streptomyces Strain DMC-498 (한국 토양균중 Esterase 저해제 검색 및 분리에 관한 연구(제 2 보) Streptomyces Strain DMC-498 균주의 저해성분 및 관련 지질의 분리)

  • 이승정;김하원;곽진환;심미자;허영근;김성원;최응칠;김병각
    • Journal of Food Hygiene and Safety
    • /
    • v.2 no.4
    • /
    • pp.181-189
    • /
    • 1987
  • To find esterase inhibitors and in the metabolites of Streptomyces strain DMC-498, two active compounds were isolated from the methanol extract of the mycelia of the strain by Silica gel column chromatography and preparatory argentation TLC. These compounds were proved to show competitive inhibition. Compound B was found to consist of linoleic and oleic acids. Fifty percent inhibition concentration ($lC_{50}$) of linoleic acid was $0.045\mu\textrm{g}/ml$, whereas oleic acid exhibited no inhibitory activity. Associated lipids: isostearic acid, isostearic acid methyl ester, oleic acid methyl ester and linoleic acid methyl ester, were isolated from the same extract, showing no inhibition of the esterase. Compound A was found to be a liquid inhibitor with an alicyclic ring and two or more oxygens, its molecular weight being more than 500.

  • PDF

Studies on the Avian Infectious Bronchitis Virus I. Antbody Survey on Avian Infectious Bronchitis Virus (닭의 전염성 기관지염 바이러스에 관한 연구 1. 전염성 기관지염 바이러스의 항체에 대한 분포 조사)

  • Yoo, Tai Suck
    • Korean Journal of Veterinary Research
    • /
    • v.8 no.1
    • /
    • pp.24-30
    • /
    • 1968
  • From 1962 to 1968, serum samples were collected from fowls of six provinces in Korea. The investigator tested for serum neutralizing antibody against the Beaudette strain of intecfious bronchitis virus. Twenty(40 percent)serum samples out of fifty revealed a neutralization index of more than 30. Neuralizing antibodies of infectious bronchitis virus are widely spread among chickens in Korea. Intensive poultry farming zones, adult chickens have been neutralizing antibody of infectious bronchitis virus.

  • PDF