• Title/Summary/Keyword: pepper breeding programs

Search Result 10, Processing Time 0.028 seconds

Cleaved Amplified Polymorphic Sequence and Amplified Fragment Length Polymorphism Markers Linked to the Fertility Restorer Gene in Chili Pepper (Capsicum annuum L.)

  • Kim, Dong Sun;Kim, Dong Hwan;Yoo, Jae Hyoung;Kim, Byung-Dong
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.135-140
    • /
    • 2006
  • Cytoplasmic male sterility (CMS) in plants, which is due to failure to produce functional pollen, is a maternally inherited trait. Specific nuclear genes that suppress CMS, termed fertility restorer (Rf) genes, have been identified in several plants. In this study, Rfl-inked molecular markers in pepper (Capsicum annuum L.) were detected by bulked segregant analysis of eight amplified fragment length polymorphisms (AFLPs). Only AFRF8 was successfully converted to a cleaved amplified polymorphic sequence (CAPS) marker. This was named AFRF8CAPS and genotype determination using it agreed with that obtained with the original AFRF8. A linkage map with a total size of 54.1 cM was constructed with AFRF8CAPS and the seven AFLP markers using the Kosambi function. The AFRF8CAPS marker was shown to be closest to Rf with a genetic distance of 1.8 cM. These markers will be useful for fast and reliable detection of restorer lines during $F_1$ hybrid seed production and breeding programs in pepper.

Novel Sources of Resistance to Phytophthora capsici on Pepper (Capsicum sp.) Landraces from Mexico

  • Retes-Manjarrez, Jesus Enrique;Rubio-Aragon, Walter Arturo;Marques-Zequera, Isidro;Cruz-Lachica, Isabel;Garcia-Estrada, Raymundo Saul;Sy, Ousmane
    • The Plant Pathology Journal
    • /
    • v.36 no.6
    • /
    • pp.600-607
    • /
    • 2020
  • Phytophthora capsici Leonian is a major pathogen of pepper worldwide and few resistance sources to this pathogen have been identified so far. The goals of this study were to identify new sources of resistance against P. capsici in Capsicum landraces and analyze the relationship between the resistance indicator of plant symptoms and some plant phenotype parameters of plant height, stem width, leaf length and leaf width. Thirty-two landraces of pepper were collected from fourteen states in Mexico. From each population, 36 plants were inoculated with 10,000 zoospores of P. capsici under controlled conditions. This experiment was repeated twice. Out of the 32 landraces, six showed high level of resistance, four showed intermediate resistance and five showed low level of resistance when compared with the susceptible control 'Bravo' and the resistant control 'CM334', indicating that these landraces are promising novel sources of resistance to P. capsici. There was no correlation between the symptoms and plant phenotype parameters. However, these parameters were not affected in the group classified as highly resistant, indicating that P. capsici does not affect the growing of these resistant pepper landraces. The other resistant groups were significantly affected in a differently manner regarding their phenotype, indicating that this pathogen reduce their growth in different ways. This study reports novel resistance sources with great potential that could be used in breeding programs to develop new pepper cultivars with durable resistance to P. capsici.

Development of a Simple Method for Detecting Capsaicinoids Using Gibb's Reagent in Pepper (Gibb's Reagent를 이용한 캡사이시노이드 간이 분석 방법)

  • Jeong, Hee-Jin;Hwang, Do-Yeon;Ahn, Jeong-Tak;Chun, Jin-Young;Han, Ko-Eun;Lee, Woo-Moon;Kwon, Jin-Kyung;Lee, Yong-Jik;Kang, Byoung-Cheorl
    • Horticultural Science & Technology
    • /
    • v.30 no.3
    • /
    • pp.294-300
    • /
    • 2012
  • Capsaicinoids are responsible for the pungency of Capsicum species. Among the several reported methods for quantifying capsaicinoids in pepper, liquid chromatography methods such as TLC and HPLC have been the most widely used due to their precision and reliability. However, they are quite expensive and time consuming to be applied to the field breeding. In this paper, we demonstrated that Gibb's reagent, 2,6-dichloroquinone chlorimide, mediated measurement of capsaicinoids is a simple and reliable method for determining the presence/absence of capsaicinoids, and estimating the amount of capsacinoids in pepper fruits. The capsaicinoids could be also detected via colorimetiric reactions of the Gibb's reagent. This simple method has been verified to be as accurate as the HPLC analysis. We have also modified this method for a high through-put analysis. This method will be useful for measuring capsaicinids in pungency breeding programs in pepper.

Genomic Tools and Their Implications for Vegetable Breeding

  • Phan, Ngan Thi;Sim, Sung-Chur
    • Horticultural Science & Technology
    • /
    • v.35 no.2
    • /
    • pp.149-164
    • /
    • 2017
  • Next generation sequencing (NGS) technologies have led to the rapid accumulation of genome sequences through whole-genome sequencing and re-sequencing of crop species. Genomic resources provide the opportunity for a new revolution in plant breeding by facilitating the dissection of complex traits. Among vegetable crops, reference genomes have been sequenced and assembled for several species in the Solanaceae and Cucurbitaceae families, including tomato, pepper, cucumber, watermelon, and melon. These reference genomes have been leveraged for re-sequencing of diverse germplasm collections to explore genome-wide sequence variations, especially single nucleotide polymorphisms (SNPs). The use of genome-wide SNPs and high-throughput genotyping methods has led to the development of new strategies for dissecting complex quantitative traits, such as genome-wide association study (GWAS). In addition, the use of multi-parent populations, including nested association mapping (NAM) and multiparent advanced generation intercross (MAGIC) populations, has helped increase the accuracy of quantitative trait loci (QTL) detection. Consequently, a number of QTL have been discovered for agronomically important traits, such as disease resistance and fruit traits, with high mapping resolution. The molecular markers for these QTL represent a useful resource for enhancing selection efficiency via marker-assisted selection (MAS) in vegetable breeding programs. In this review, we discuss current genomic resources and marker-trait association analysis to facilitate genome-assisted breeding in vegetable species in the Solanaceae and Cucurbitaceae families.

Evaluation of Pepper Genetic Sources (Capsicum spp.) for Disease Resistance Breeding (병저항성 육종을 위한 고추 유전자원의 저항성 평가)

  • Lee, Sang-Jun;Kim, Byung-Sup
    • Horticultural Science & Technology
    • /
    • v.30 no.2
    • /
    • pp.185-191
    • /
    • 2012
  • For initiation of resistance breeding program of the red pepper, 21 PR ($Phytophthora$ resistance) cultivars, 36 cultivars collected from USA and 'Supermanitta' which is a susceptible cultivar against phytophthora blight were assayed against phytophthora blight, powdery mildew, and anthracnose. For seedling assay of phytophthora blight, three different mating type strains of $Phytophthora$ $capsici$ were used (A1, A2, Sterile). The result showed that most of the pepper of PR cultivars were resistance or moderately resistance at each mating type. 'Yeokganghongjanggun' was resistant to all three $P.$ $capsici$ strains and 'PR-Datta' and 'PR-Manitta' were resistant or moderately resistant at each type. In case of the collected cultivars, 'NuMex J.E.Parker', 'Omni Color', and 'SCM334' were resistant to all the three types and some cultivars including 'Sweet Banana' and 'Tabasco' were moderately resistant to each type fungi. 'Orange Habanero' and 'Black Cuban' were resistant to powdery mildew and 'Supermanitta' and 'PR Keumdong' were moderately resistant, while 'Santa Fe Grande', 'NuMex Pinata' and 'Puya' were very susceptible. In the case of anthracnose, 'Aji Limon' and 'Capsicum baccatum var. pendulum 3-4' were resistant and 'Pobalno', 'Omni Color', 'Negro', 'Mesilla', 'Mulato', 'Bhut Jolokia', 'Big Dipper', 'Black Cuban', 'NuMex Pinata', and 'NuMex Big Jim' were moderately resistant. The most PR cultivars except 'Taesan' were susceptible or very susceptible. These resistant individuals identified through this experiment can be used as sources of resistance to pepper pathogens in the future breeding programs.

Non-pungent Capsicum Contains a Deletion in the Capsaicinoid Synthetase Gene, which Allows Early Detection of Pungency with SCAR Markers

  • Lee, Choong-Jae;Yoo, Eun Young;Shin, Joo Hyun;Lee, Jemin;Hwang, Hee-Sook;Kim, Byung-Dong
    • Molecules and Cells
    • /
    • v.19 no.2
    • /
    • pp.262-267
    • /
    • 2005
  • The capsaicinoid synthetase (CS) gene cosegregated perfectly with the C locus, which controls the presence of pungency, in 121 $F_2$ individuals from a cross between 'ECW123R' and 'CM334', both of Capsicum annuum. We concluded that CS and C are tightly linked. Sequence analysis of the genes of four pungent and four non-pungent pepper lines showed that the non-pungent peppers had a 2,529 bp-deletion in the 5' upstream region of CS. We have developed molecular markers of the C locus to detect pungency at the seedling stage. Based on the deleted sequence, we developed five SCAR markers, two of them being codominant. These SCAR markers will be useful for easy, accurate, and early detection of non-pungent individuals in breeding programs.

Identification and Sequence Analysis of RNA3 of a Resistance-Breaking Cucumber mosaic virus Isolate on Capsicum annuum

  • Lee Mi-Yeon;Lee Jang-Ha;Ahn Hong-Il;Yoon Ju-Yeon;Her Nam-Han;Choi Jang-Kyung;Choi Gug-Seon;Kim Do-Sun;Harn Chee-Hark;Ryu Ki-Hyun
    • The Plant Pathology Journal
    • /
    • v.22 no.3
    • /
    • pp.265-270
    • /
    • 2006
  • Cultivated hot pepper crops showing severe mosaic symptom were found in Korea in 2004 and their causal agent was identified as Cucumber mosaic virus (CMV). These pepper crops was resistant to the virus in the filled, and they belonged to pathotype 0 (P0) resistant pepper. Resistance screening of selected pepper plants showed that a pepper isolate of CMV was the P0 resistance-breaking virus. This P0 resistance-breaking isolate of CMV, named as Ca-P1, was isolated from leaves of the virus-infected Capsicum annuum cv. Manidda that showed systemic severe mosaic symptom. Ca-P1-CMV could induce systemic mosaic symptoms on P0-susceptible (P0-S) and P0-resistant (P0-R) cultivars whereas an ordinary strain (Fny-CMV) could not infect P0-R. This result suggests that Ca-P1-CMV can overcome P0 resistant pepper cultivars. To analyze its genome sequence, the complete nucleotide sequence of RNA3 of Ca-P1-CMV was determined from the infectious full-length cDNA clone of the virus. RNA3 of Ca-P1-CMV consisted of 2,219 nucleotides. Overall sequence homology of RNA3-encoded two viral proteins (movement protein and coat protein) revealed high similarity (75.2-97.2%) with the known CMV strains. By sequence analysis with known representative strains of CMV, Ca-P1-CMV belongs to a typical member of CMV subgroup IB. The resistance and resistance-breaking mechanisms of pepper and counterpart CMV, respectively, remain to be investigated, which will enrich the genetic resources and accelerate CMV-resistant pepper breeding programs.

Phytophthora Blight of Pepper and Genetic Control of the Disease (고추 역병과 그 유전적 방제)

  • Kim, Byung-Soo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.3
    • /
    • pp.111-117
    • /
    • 2014
  • Phytophthora blight caused by Phytophthora capsici Leonian is a dangerous disease threatening pepper growers worldwide. The efficacy of chemical control is generally low as the pathogen is soil-borne and rapidly spread by zoospores during the rainy season. Thus, based on the demand for resistant varieties, various good resistant sources, such as CM334, AC2258, and PI201234, have been reported and their inheritance of resistance studied by many different authorities. However, the mode of inheritance remains unclear, as 1 or 2 independent dominant genes, 3 genes, or multiple genes have all been reported as responsible for resistance. Recently, QTL mappings of the gene factors for resistance have been reported, and molecular markers for resistance used in breeding programs. With the release of many resistant commercial hybrid cultivars, differentiation of pathotypes of the pathogen is attracting interest among breeders and plant pathologists. Various authorities have already classified the pathogen strains into different races according to the inter-action between resistant host plants, including the source of resistance, such as CM334 and PI201234, and resistant commercial varieties and P. capsici isolates. However, no standard differential host sets have yet been established, so the results are good only for the pathogen strains used in the experiments. Thus, for breeding varieties with durable resist-ance, it is important to introduce resistance from different sources and use diverse local pathogen strains collected in the target area for distribution in a breeding program.

Restorer Genotype for Male Sterile Cytoplasm of Genetic Resources Moderately Resistant to Phytophthora capsici in Capsicum Pepper

  • Kim, Byung-Soo;Ahn, Joon-Hyung;Lee, Jae-Moo;Park, Dong-Guen;Kim, Hye-Yeon
    • Horticultural Science & Technology
    • /
    • v.30 no.1
    • /
    • pp.73-78
    • /
    • 2012
  • KC00256, KC00406, KC00462, KC00463, KC00820, and KC00821, the genetic resources that have previously been reported as moderately resistant to Phytophthora capsici, as well as the line KC01322, a new source of moderate resistance introduced from Laos, were tested against two strains (Pc003 and Pc005) of P. capsici. We also determined the nuclear restorer genotypes of these lines, in regards to their interaction with cytoplasmic male sterility, through crossing the resources with cytoplasmic male sterile Punggok-A (Srfrf) and determining the fertility of the $F_1$ hybrids. The studied lines exhibited a low level of resistance to both the strains of P. capsici compared to highly resistant CM334, but their response was fairly consistent for both P. capsici strains. KC00406, KC00462, KC00463, and KC01322 produced stable, male fertile $F_1$ plants indicating that they are restorers with genotype N(S)RfRf. KC00821 produced male sterile $F_1$ plants and was identified as a maintainer with genotype Nrfrf. The $F_1$ plants of the KC00820 cross, however, set a few male fertile flowers in the greenhouse at seedling stage, then became male sterile after being transplanted to the plastic greenhouse soil in May and remained so to the end of the growing season. Therefore, KC00820 is an unstable maintainer with genotype Nrfrf. The moderate resistance exhibited by these genetic resources may be integrated into breeding programs aimed at promoting higher levels resistance via recurrent selection or hybridization.

Identification of Quantitative Trait Loci Associated with Anthracnose Resistance in Chili Pepper (Capsicum spp.) (고추 탄저병 저항성 관련 양적형질 유전자좌 분석)

  • Kim, Su;Kim, Ki-Taek;Kim, Dong-Hwi;Yang, Eun-Young;Cho, Myeong-Cheoul;Jamal, Arshad;Chae, Young;Pae, Do-Ham;Oh, Dae-Geun;Hwang, Ju-Kwang
    • Horticultural Science & Technology
    • /
    • v.28 no.6
    • /
    • pp.1014-1024
    • /
    • 2010
  • Pepper ($Capsicum$ spp.) anthracnose caused by $Colletotrichum$ $acutatum$ is a destructive disease susceptible to areas where chili peppers are grown. $Capsicum$ $baccatum$ var. $pendulum$ (Cbp) is resistant to anthracnose and has actively been used for interspecific hybridization for the introgression of resistance gene(s) into cultivated chili peppers. The goals of this study were to determine the inheritance of resistance to anthracnose within $Capsicum$ $baccatum$ and to map quantitative trait loci (QTLs) for the anthracnose resistance. A genetic mapping population consisting of 126 $F_2$ plants derived from a cross between $Capsicum$ $baccatum$ var. $pendulum$ (resistant) and $Capsicum$ $baccatum$ 'Golden-aji' (susceptible) was used for linkage mapping. The linkage map was constructed with 52 SSRs, 175 AFLPs, and 100 SRAPs covering 1,896cM, with an average interval marker distance of 4.0cM. Based on this map, the number, location, and effect of QTLs for anthracnose resistance were studied using plants inoculated in the laboratory and field. A total of 19 quantitative trait loci (2 major QTLs and 16 minor QTLs) were detected. Two QTLs ($An8.1$, $An9.1$) showed 16.4% phenotypic variations for anthracnose resistance after wounding inoculation. In addition, five minor QTL loci ($An7.3$, $An7.4$, $An4.1$, $An3.1$, $An3.2$) showed a total of 60.73% phenotypic variations of anthracnose resistance in the field test. Several significant QTLs were also detected and their reproducibility was confirmed under different inoculation conditions. These QTLs are now being confirmed with different breeding populations. Markers tightly linked to the QTLs that are reliable under different environmental conditions will help to determine the success of marker-assisted selection for anthracnose -resistant breeding programs in chili pepper.