• Title/Summary/Keyword: penetration ratio

Search Result 676, Processing Time 0.027 seconds

Influence of plugger penetration depth on the area of the canal space occupied by gutta-percha

  • Lee, Young-Mi;Park, Jeong-Won;Kim, Sung-Kyo
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.557-557
    • /
    • 2003
  • I. Objectives The purpose of this study was to evaluate the ratio of gutta-percha area in the canal after canal obturation with Continuous Wave of Condensation Technique with varying depths of plugger penetration. II. Materials and Methods Forty extracted human teeth with single canal were divided into four group of ten teeth each. Root canals were prepared up to size 40 of 0.06 taper with $ProFile^{\circledR}$. After drying, canals of three groups were filled with Continuous Wave of Condensation Technique with System $B^{TM}$ and different plugger penetration depths of 3, 5, and 7mm from the apex.(omitted)

  • PDF

Evaluation of Chloride Penetration Resistance of Frost Concrete according to the water-cement ratio, during the Cold Wave (한파로 인한 초기 동해를 입은 콘크리트의 염해 저항성 평가)

  • Park, Dong-Cheon;Lee, Jun-Hae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.165-166
    • /
    • 2020
  • The climate on the Korean Peninsula has been warmed recently, abnormal weather conditions such as heat waves, cold waves, and tropical nights have been detected frequently. Precisely, the number of days with cold waves in the winter has increased, and rapid changes of temperature in the morning and afternoon have occurred frequently in the 2000s. Due to the previous phenomenons, this research is focused on evaluating the concrete's Chloride Penetration Resistance and Durability, and the difference of the resistance according to the W/C.

  • PDF

Evaluation of Fundamental Properties and Chloride Penetration Resistance of Concrete using Superabsorbent Polymers (고 흡수성 폴리머를 혼입한 콘크리트의 기초 물성 및 염화물 침투 저항성 평가)

  • Lee, Chan-Kyu;Kim, Il-Sun;Choi, So-Yeong;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.50-59
    • /
    • 2020
  • Superabsorbent Polymer (SAP) expands inside concrete by absorbing water and contracts as it discharges water. Through this process, concrete can achieve the internal curing effect, but the space occupied by the expanded SAP remains as a void. In this study, the effects of SAP internal curing and voids were evaluated by evaluating the fundamental properties and chloride penetration resistance of SAP mixed concrete. Also, to evaluate the internal curing effect by SAP, the tests were carried out under water and sealed curing conditions, respectively. From the result, the compressive strength of water curing did not differ significantly according to the mixing ratio of SAP. In the case of sealed curing, however, the compressive strength tended to increase as the mixing ratio of SAP increased. The internal curing effect of sealed curing was considered to have influenced the increase in compressive strength. In the case of the chloride diffusion coefficient, the diffusion coefficient tended to decrease as the mixing ratio of SAP increased. In particular, as the sealed curing is applied, the chloride penetration resistance is further improved due to internal curing effect. If the curing conditions are different, it is considered inappropriate to estimate the chloride penetration resistance by the surface electrical resistivity.

Effects of pile geometry on bearing capacity of open-ended piles driven into sands

  • Kumara, Janaka J.;Kurashina, Takashi;Kikuchi, Yoshiaki
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.385-400
    • /
    • 2016
  • Bearing capacity of open-ended piles depends largely on inner frictional resistance, which is influenced by the degree of soil plugging. While a fully-plugged open-ended pile produces a bearing capacity similar to a closed-ended pile, fully coring (or unplugged) pile produces a much smaller bearing capacity. In general, open-ended piles are driven under partially-plugged mode. The formation of soil plug may depend on many factors, including wall thickness at the pile tip (or inner pile diameter), sleeve height of the thickened wall at the pile tip and relative density. In this paper, we studied the effects of wall thickness at the pile base and sleeve height of the thickened wall at the pile tip on bearing capacity using laboratory model tests. The tests were conducted on a medium dense sandy ground. The model piles with different tip thicknesses and sleeve heights of thickened wall at the pile tip were tested. The results were also discussed using the incremental filling ratio and plug length ratio, which are generally used to describe the degree of soil plugging. The results showed that the bearing capacity increases with tip thickness. The bearing capacity of piles of smaller sleeve length (e.g., ${\leq}1D$; D is pile outer diameter) was found to be dependent on the sleeve length, while it is independent on the sleeve length of greater than a 1D length. We also found that the soil plug height is dependent on wall thickness at the pile base. The results on the incremental filling ratio revealed that the thinner walled piles produce higher degree of soil plugging at greater penetration depths. The results also revealed that the soil plug height is dependent on sleeve length of up to 2D length and independent beyond a 2D length. The piles of a smaller sleeve length (e.g., ${\leq}1D$) produce higher degree of soil plugging at shallow penetration depths while the piles of a larger sleeve length (e.g., ${\geq}2D$) produce higher degree of soil plugging at greater penetration depths.

Fundamental Study on Development of Sealants used for WIM Sensor Installation (WIM 센서 설치에 적합한 실런트 개발을 위한 기초적인 연구)

  • Lim, Chisoo;Kim, Du-Byung;Kim, Yongjoo;Lee, Kanghun;Lee, Jaejun
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.17-24
    • /
    • 2017
  • PURPOSES : This study aims to develop a sealant for use in the installation of Weigh-In-Motion (WIM) sensor for asphalt concrete or cement concrete pavements. METHODS : In order to investigate the properties of various sealants that were mixed with latex and carbon fiber, various test methods were adopted, such as bituminous bond strength test, softening point test, and cone penetration test. To evaluate moisture susceptibility, the BBS test was conducted under moist condition. The bond strength ratio (BSR) was calculated based on tensile strength ratio method. RESULTS : The sealant's properties significantly varied according to the amount of latex or carbon fiber. The usage of latex marginally enhanced the cone penetration test result, notwithstanding reduced asphalt content. This implies that the sealant will be proper cold temperature reason. Moreover, the addition of latex and carbon fiber evidently increased the softening point. This indicates that the tendency of the material to flow at elevated temperatures is encountered during service. With the addition of latex and carbon fiber, the moisture susceptibility measured with BSR improved marginally, while the bond strength under dry condition decreased marginally. Sealant F displays the highest bond strength and BSR under limited test conditions. CONCLUSIONS : According to the proportion of latex and carbon fiber mixed, properties of sealant, such as softening point, cone penetration, and BSR varied marginally. This indicates that the sealant has to be applied considering the environmental condition, to improve service life.

Calculations of Radiation Measurement-Related Correction Factors (방사선 측정관련 보정인자 계산)

  • Shin, Hee-Sung;Ro, Seung-Gy;Kim, Ho-Dong
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.1
    • /
    • pp.19-24
    • /
    • 2003
  • The self-attenuation factor for an $^{198}Au$ sample and the 0.412 MeV gamma-ray penetration ratio in the circular Al-cover of the radiation detector have been determined using an analytical solution and MCNP code. The results show that the self-attenuation factors obtained from the analytical solution coincide with those of MCNP code for all but the Au sample with the relatively larger radius. Then the maximum difference between the two methods appears to be 9 % in the Au sample of 1.5 mm radius. It also is revealed that the analytical solutions of the 0.412 MeV gamma-ray penetration ratio in the Al-cover of 7.62 cm radius are consistent with those of the MCNP code within the standard deviation.

Study on Ignition Characteristics Relating to Igniter Penetration Depth in a Model Sector Combustor (모델 섹터 연소기의 점화기 깊이에 따른 점화특성 연구)

  • Jin, Yu-In;Ryu, Gyong Won;Min, Seong Ki;Kim, Hong Jip
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.2
    • /
    • pp.36-41
    • /
    • 2017
  • Aero gas turbine engines must demonstrate their ability to be ignited on ground conditions or relighted in flight. The electric spark ignition is usually used in current aero gas turbine engines. Experiments on ignition characteristics relating to spark igniter penetration depth under atmospheric pressure and temperature conditions were conducted on the model combustor which is scaled in 1/18. Exciter was operated during 2 seconds, and successful ignition phenomena were confirmed by the pressure rising sharply in combustor. In addition, instantaneous ignition images were captured by a high-speed camera. It showed kernel propagation and successful ignition events in the sector model combustor. Ignition test results showed that ignition limit with increase in penetration depth of the igniter plug was wider. When the penetration depth of the igniter plug increased under the same fuel injection pressure condition, successful ignition events were obtained in higher differential pressure conditions between inlet and outlet of the combustor. The results demonstrate that the ratio of the combustible mixture, which is exposed to the high temperature environment around the igniter plug tip, increases. Thereby affect the combustor ignition performance.

A MECHANISM OF DEEP WELD PENETRATION IN GAS TUNGSTEN ARC WELDGING WITH ACTIVATING FLUX

  • Manabu Tanaka;Hidenori Terasaki;Masao Ushio;John J. Lowke;Yang, Chun-Li
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.76-81
    • /
    • 2002
  • The dramatic increase in the depth of a weld bead penetration has been demonstrated by welding a stainless steel in GTA (Gas-Tungsten-Arc) process with activating flux which consists of oxides and halides. However, there is no commonly agreed mechanism fer the effect of flux on the process. In order to make clear the mechanism, each behavior of the arc md the weld pool in GTA process with activating flux is observed in comparison with a conventional GTA process. A constricted anode root is shown in GTA process with the activating flux, whereas a diffuse anode root is shown in the conventional process. These anode roots are related strongly to metal vapor from the weld pool and the metal vapor is also related to temperature distributions on the weld pool surface. Furthermore, it is suggested that a balance between the Marangoni force and the drag force of the cathode jet should dominate the direction of re-circulatory flow in the weld pool. The electromagnetic force encourages the inward re-circulatory flow due to the constricted anode root in the case with flux. The difference in flow direction in the weld pool changes the geometry or depth/width ratio of weld bead penetration.

  • PDF

Spray and Combustion Characteristics of a Dump-type Ramjet Combustor

  • Lee, Choong-Won;Moon, Su-Yeon;Sohn, Chang-Hyun;Youn, Hyun-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2019-2026
    • /
    • 2003
  • Spray and combustion characteristics of a dump-type ram-combustor equipped with a V-gutter flame holder were experimentally investigated. Spray penetrations with a change in airstream velocity, air stream temperature, and dynamic pressure ratio were measured to clarify the spray characteristics of a liquid jet injected into the subsonic vitiated airstream, which maintains a highly uniform velocity and temperature. An empirical equation was modified from Inamura's equation to compensate for experimental conditions. In the case of insufficient penetration, the flame in the ram-combustor was unstable, and vice versus in the case of sufficient penetration. When the flame holder was not equipped, the temperature at the center of the ram-combustor had a tendency to decrease due to the low penetration and insufficient mixing. Therefore, the temperature distribution was slanted to the low wall of the ram-combustor. These trends gradually disappeared as the length of the combustor became longer and the flame holder was equipped. Combustion efficiency increased when the length of the combustor was long and the flame holder was equipped. Especially, the effect of the flame holder was more dominant than that of the combustor length in light of combustion efficiency.

Evaluation of KICT-type Large Penetration Test using Calibration Chamber System (Calibration Chamber System을 이용한 KICT-type LPT 장비의 거동분석)

  • Kim, Young-Seok;Kim, Young-Chin;Lee, Woo-Jin;An, Shin-Whan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1359-1364
    • /
    • 2008
  • It is well known that the standard penetration test (SPT) has been used in all over the world to get geotechnical properties of the ground. However, it is difficult to apply the SPT to the dense sand, gravel, weathered rock, etc. For the application of the SPT in these grounds, it is necessary to change in the diameter and the impact energy of the SPT. For the improvement of site investigation technology, Large Penetration Testing device (KICT-type LPT) was developed and applied to the in situ condition. The drop height and weight of the hammer in developed system were decided as 760mm and 150kg, respectively. And the developed sampler has the inner diameter of 63 mm and the length of 500 mm with the adjustment of energy ratio to the SPT of 1.5. In this study, the performance of KICT-type LPT was evaluated by using a calibration chamber system and pile driving analyzer (PDA)

  • PDF