• Title/Summary/Keyword: pendulum type

Search Result 137, Processing Time 0.027 seconds

Development of a Pendulum-driven Type Spherical Mobile Robot (진자 구동 방식의 구형 이동 로봇 개발)

  • Kim, Ja-Young;Kwon, Hyok-Jo;Kim, Dae-Hyun;Choi, Hee-Byoung;Lee, Ji-Hong
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.124-126
    • /
    • 2009
  • In this paper a pendulum-driven type spherical mobile robot is introduced. Many researchers have been studied about a spherical mobile robot. we developed a pendulum-driven type spherical mobile robot and analyzed mechanism of pendulum motion. Mechanism of pendulum motion applied to the robot. Consequently, we could verify the motion of the robot as motion of pendulum.

  • PDF

Implement of the inverted pendulum system of cart type via PID control method (카트형 역진자 시스템에 대한 PID제어)

  • Cho, Hyung-Min;Kim, Min-Soo;Dang, Hyo-Jin;Lee, Seung-Hoon;Park, Myung-Jin;Kwon, Oh-Min
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.85-86
    • /
    • 2015
  • This paper is to study the inverted pendulum system of cart type by using the method of PID control. This system is that inverted pendulum maintain a constant balance from unstable state by moving a cart. It is controlled via the PID controller. PID controller is proposed to maintain a constant balance for nonlinear system such as the inverted pendulum system so PID control is widely used in the industrial field because of superior control performance, easy implementation and relatively simple structure. To design this system, it consist of Encorder and DC motor. Encorder is used to read the angle of the pendulum and DC motor is used to change the angle. We can verify results of experiment through the Matlab simulator via the inverted pendulum system of cart type.

  • PDF

A study on Fuzzy-PID Control of a Straight Line Type Inverted Pendulum (직선형 도립 진자의 퍼지-PID 제어에 관한 연구)

  • Kim, J.M.;Lee, S.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.57-64
    • /
    • 1994
  • This paper proposes a fuzzy tuning PID controller for straight line type inverted pendulum. The conventional PID controller which is used widely in industrial field has fatal drawback on determining control gains for practical system. The proposed controller tunes the gains automatically based on fuzzy urle derived from the experience of expert operator. The results of simulation and experiment show the efficiency of the proposed control method comparing with conventional PID control method in terms of rising time, overshoot, and overall errors.

  • PDF

Hybrid control of rotary type inverted pendulum by using one-chip microcomputer (One-chip 마이크로 컴퓨터에 의한 회전형 도립 진자의 hybrid 제어)

  • 김환성;김상봉
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.999-1003
    • /
    • 1992
  • In the paper, a hybrid control approach for the swing-up control of a rotary type inverted pendulum is treated using one-chip microcomputer. The control approach is composed by a scheduling logic control for swing up control and the linear state feedback control to achieve the disired inverted-state of the pendulum. The experimental cystem has been implemented by a 16-bit one-chip microcomputer with 3096 opu as the digital controller incorporating the above mentioned control approach.

  • PDF

Experimental Study on Floor Isolation of Main Control Room of Nuclear Power Plant using FPS(Friction Pendulum System) (마찰진자베어링(FPS) 면진시스템을 적용한 원전주제어실의 진동대 실험)

  • Lee, Kyung-Jin;Ham, Kyung-Won;Suh, Yong-Pyo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.445-452
    • /
    • 2005
  • The seismic characteristics with Friction Pendulum System have been studied using a shaking table system. In this study, we made two kind of floor system (Type I, Type II) and several seismic tests with and without isolation system were conducted to evaluate floor isolation effectiveness of Friction Pendulum System. Both type have showed large reduction effectiveness in acceleration, response spectra but Type II have showed lower acceleration and lower first mode in response spectra, compared to type I. On the basis of test results and consideration of application, it is found that type II is more suitable for floor model of main control room of Nuclear Power Plant.

  • PDF

Seismic Performance Evaluation of Cone-type Friction Pendulum Bearing System Using Shaking Table Test (진동대실험을 통한 원추형 마찰진자베어링의 내진성능 평가)

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Kim, Nam-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.389-394
    • /
    • 2011
  • Existing FPS(Friction Pendulum System) is isolation system which is possible to isolate structures by pendulum characteristic from ground vibration. Structural natural frequency could be decided by designing the radius of curvature of FPS. Thus, response vibration could be reduced by changing natural frequency of structures from FPS. But effective periods of recorded seismic wave were various and estimation of earthquake characteristic could be difficult. If effective periods of seismic wave correspond to natural frequency of structures with FPS, resonance can be occurred. Therefore, CFPBS(Cone-type Friction Pendulum Bearing System) was developed for controlling the response acceleration and displacement by the slope of friction surfaces. Structural natural frequency with CFPBS can be changed according to position of ball on the friction surface which was designed cone-type. Therefore, Divergence of response could be controlled by CFPBS which had constantly changing natural frequency with low modal participation factor in wide-range. In this study, Seismic performance of CFPBS was evaluated by numerical analysis and shaking table test.

  • PDF

Seismic Performance Evaluation of Cone-type Friction Pendulum Bearing System Using Shaking Table Test (진동대실험을 통한 원추형 마찰진자베어링의 내진성능 평가)

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Kim, Nam-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.7
    • /
    • pp.599-608
    • /
    • 2011
  • FPS(friction pendulum system) is an isolation system which is possible to isolate structures from earthquake by pendulum characteristic. Natural frequencies of the structures could be determined by designing the radius of curvature of FPS. Thus, response vibration could be reduced by changing natural frequency of structures from FPS. But effective periods of recorded seismic wave were various and estimation of earthquake characteristic could be difficult. If effective periods of seismic wave correspond to natural frequency of structures with FPS, resonance can be occurred. Therefore, CFPBS(cone-type friction pendulum bearing system) was developed for controlling the acceleration and displacement of structure by the slope of friction surfaces. Structural natural frequency with CFPBS can be changed according to position of ball on the friction surface which was designed cone-type. Therefore, superstructures on CFPBS could be isolated from earthquake. In this study, seismic performance of CFPBS was evaluated by numerical analysis and shaking table test.

KisBot II : New Spherical Robot with Curved Two-pendulum Driving Mechanism (두 개의 곡선형 펜들럼 주행 메커니즘을 갖는 구형로봇)

  • Yoon, Joong-Cheol;Ahn, Sung-Su;Lee, Yun-Jung
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.4
    • /
    • pp.323-333
    • /
    • 2011
  • Due to the limited pendulum motion range, the conventional one-pendulum driven spherical robot has limited driving capability. Especially it can not drive parallel direction with center horizontal axis to which pendulum is attached from stationary state. To overcome the limited driving capability of one-pendulum driven spherical robot, we introduce a spherical robot, called KisBot II, with a new type of curved two-pendulum driving mechanism. A cross-shape frame of the robot is located horizontally in the center of the robot. The main axis of the frame is connected to the outer shell, and each curved pendulum is connected to the end of the other axis of the frame respectively. The main axis and pendulums can rotate 360 degrees inside the sphere orthogonally without interfering with each other, also the two pendulums can rotate identically or independent of each other. Due to this driving mechanism, KisBot II has various motion generation abilities, including a fast steering, turning capability in place and during travelling, and four directions including forward, backward, left, and right from stationary status. Experiments for several motions verify the driving efficiency of the proposed spherical robot.

Hybrid PD-Servo State Feedback Control Algorithm for Swing up Inverted Pendulum System

  • Nundrakwang, Songmoung;Benjanarasuth, Taworn;Ngamwiwit, Jongkol;Komine, Noriyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.690-693
    • /
    • 2005
  • In this paper, a hybrid PD-servo state feedback control algorithm for swing up inverted pendulum system is proposed. It consists of two parts. The first part is the PD position control for swinging up the pendulum from the natural pendent position to around the upright position and the second part is the servo state feedback control for stabilizing the inverted pendulum in upright position. The first controller is PD controller and it is tuned to control the position of the pendulum by moving the cart back and forth until the pendulum swings up around the upright position. Then the second controller will be switched to stabilize the inverted pendulum in its upright position. The controller in this stage is the servo state feedback controller designed by pole placement. Experimental results of PD type swinging up control system, of stabilizing servo state feedback control system and of the proposed hybrid PD-servo state feedback control system to swing up and stabilize inverted pendulum show that the proposed method is effective and reliable for actual implementation while it is simple.

  • PDF

MAXILLARY MOLAR DISTALIZATION WITH THE BONE-SUPPORTED PENDULUM (Bone-supported pendulum을 이용한 상악대구치 원심이동)

  • Jang, Yong-Gul;Park, Ho-Won;Lee, Ju-Hyun;Seo, Hyun-Woo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.3
    • /
    • pp.464-474
    • /
    • 2009
  • To distalize the maxillary molars, the traditional techniques such as extra-oral traction, Wilson distalizing arches, removable spring appliances and Schwarz plate-type appliances have been used. But, these need considerable patient cooperation. For minimal patient compliance, many practitioners use the pendulum appliances. Several clinical studies demonstrated pendulum is effective molar distalization appliance in the growing patient(using the premolars and the palate as anchorage). But unfortunately, maxillary anterior teeth also shift mesially as the molar moves distally. As a result anchorage loss is occurred. To overcome these disadvantages, we used bone-supported pendulum, combined the conventional pendulum with Skeletal Anchorage System(SAS). The miniscrew was implanted in the anterior paramedian region of the median palatal suture, which has comparatively sufficient bone thickness and is low risk to damage on the dental follicles. We report three cases, using bone-supported pendulum for the maxillary molar distalization in children. After treatment, we find out anchorage stability, minimal unfavorable anterior tooth movement and sufficient molar distalization.

  • PDF