• Title/Summary/Keyword: penalized h-likelihood

Search Result 4, Processing Time 0.024 seconds

Maximum Penalized Likelihood Estimate in a Sobolev Space

  • Park, Young J.;Lee, Young H.
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.1
    • /
    • pp.23-30
    • /
    • 1997
  • We show that the Maximum Penalized Likelihood Estimate uniquely exits in a Sobolve spece which consists of bivariate density functions. The Maximum Penalized Likehood Estimate is represented as the square of the sum of the solutions of the Modified Helmholtz's equation on the compact subset of R$^{2}$.

  • PDF

Variable selection in Poisson HGLMs using h-likelihoood

  • Ha, Il Do;Cho, Geon-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1513-1521
    • /
    • 2015
  • Selecting relevant variables for a statistical model is very important in regression analysis. Recently, variable selection methods using a penalized likelihood have been widely studied in various regression models. The main advantage of these methods is that they select important variables and estimate the regression coefficients of the covariates, simultaneously. In this paper, we propose a simple procedure based on a penalized h-likelihood (HL) for variable selection in Poisson hierarchical generalized linear models (HGLMs) for correlated count data. For this we consider three penalty functions (LASSO, SCAD and HL), and derive the corresponding variable-selection procedures. The proposed method is illustrated using a practical example.

H-likelihood approach for variable selection in gamma frailty models

  • Ha, Il-Do;Cho, Geon-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.1
    • /
    • pp.199-207
    • /
    • 2012
  • Recently, variable selection methods using penalized likelihood with a shrink penalty function have been widely studied in various statistical models including generalized linear models and survival models. In particular, they select important variables and estimate coefficients of covariates simultaneously. In this paper, we develop a penalize h-likelihood method for variable selection in gamma frailty models. For this we use the smoothly clipped absolute deviation (SCAD) penalty function, which satisfies a good property in variable selection. The proposed method is illustrated using simulation study and a practical data set.

Variable Selection in Frailty Models using FrailtyHL R Package: Breast Cancer Survival Data (frailtyHL 통계패키지를 이용한 프레일티 모형의 변수선택: 유방암 생존자료)

  • Kim, Bohyeon;Ha, Il Do;Noh, Maengseok;Na, Myung Hwan;Song, Ho-Chun;Kim, Jahae
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.5
    • /
    • pp.965-976
    • /
    • 2015
  • Determining relevant variables for a regression model is important in regression analysis. Recently, a variable selection methods using a penalized likelihood with various penalty functions (e.g. LASSO and SCAD) have been widely studied in simple statistical models such as linear models and generalized linear models. The advantage of these methods is that they select important variables and estimate regression coefficients, simultaneously; therefore, they delete insignificant variables by estimating their coefficients as zero. We study how to select proper variables based on penalized hierarchical likelihood (HL) in semi-parametric frailty models that allow three penalty functions, LASSO, SCAD and HL. For the variable selection we develop a new function in the "frailtyHL" R package. Our methods are illustrated with breast cancer survival data from the Medical Center at Chonnam National University in Korea. We compare the results from three variable-selection methods and discuss advantages and disadvantages.