References
- Androulakis, E., Koukouvinos, C. and Vonta, F. (2012). Estimation and variable selection via frailty models with penalized likelihood. Statistics in Medicine, 31, 2223-2239. https://doi.org/10.1002/sim.5325
- Efron, B. and Morris, C. (1975). Data analysis using Steins estimator and its generalizations. Journal of the American Statistical Association, 70, 311-319. https://doi.org/10.1080/01621459.1975.10479864
- Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96, 1348-1360. https://doi.org/10.1198/016214501753382273
- Fan, J. and Li, R. (2002). Variable selection for Cox's proportional hazards model and frailty model. The Annals of Statistics, 30, 74-99. https://doi.org/10.1214/aos/1015362185
- Fan, J. and Lv, J. (2010). A selective overview of variable selection in high dimensional feature space. Statistica Sinica, 20, 101-148.
- Fan, J. and Peng, H. (2004). Nonconcave penalized likelihood with a diverging number of parameters. The Annals of Statistics, 32, 928-961. https://doi.org/10.1214/009053604000000256
- Ha, I. D. and Cho, G.-H. (2012). H-likelihood approach for variable selection in gamma frailty models. Journal of the Korean Data & Information Science Society, 23, 199-207. https://doi.org/10.7465/jkdi.2012.23.1.199
- Ha, I. D. and Lee, Y. (2003). Estimating frailty models via Poisson hierarchical generalized linear models. Journal of Computational and Graphical Statistics, 12, 663-681. https://doi.org/10.1198/1061860032256
- Ha, I. D., Lee, Y. and MacKenzie, G. (2007). Model selection for multi-component frailty models. Statistics in Medicine, 26, 4790-4807. https://doi.org/10.1002/sim.2879
- Ha, I. D. and Noh, M. (2013). A visualizing method for investigating individual frailties using frailtyHL R-package. Journal of the Korean Data & Information Science Society, 24, 931-940. https://doi.org/10.7465/jkdi.2013.24.4.931
- Ha, I. D. Pan, J., Oh, S. and Lee, Y. (2014). Variable selection in general frailty Models using penalized h-Likelihood. Journal of Computational and Graphical Statistics, 23, 1044-1060. https://doi.org/10.1080/10618600.2013.842489
- Ha, I. D., Sylvester, R., Legrand, C. and MacKenzie, G. (2011). Frailty modelling for survival data from multi-centre clinical trials. Statistics in Medicine, 30, 2144-2159. https://doi.org/10.1002/sim.4250
- Hunter, D. and Li, R. (2005). Variable selection using MM algorithms. The Annals of Statistics, 33, 1617-1642. https://doi.org/10.1214/009053605000000200
- Johnson, B. A., Lin, D. Y. and Zeng, D. (2008). Penalized estimating functions and variable selection in semiparametric regression models. Journal of the American Statistical Association, 103, 672-680. https://doi.org/10.1198/016214508000000184
- Kwon, S., Oh, S. and Lee Y. (2014). The use of random-effect models for high-dimensional variable selection problems. revision sent to Scandinavian Journal of Statistics.
- Lee, D., Lee, W., Lee, Y. and Pawitan, Y. (2010). Super sparse principal component analysis for high-throughput genomic data. BMC Bioinformatics, 11, 296. https://doi.org/10.1186/1471-2105-11-296
- Lee, D., Lee, W., Lee, Y. and Pawitan, Y. (2011a). Sparse partial least-squares regression and its applications to high-throughput data analysis. Chemo-metrics and Intelligent Laboratory Systems, 109, 1-8. https://doi.org/10.1016/j.chemolab.2011.07.002
- Lee, S. (2015). A note on standardization in penalized regressions. Journal of the Korean Data & Information Science Society, 26, 505-516. https://doi.org/10.7465/jkdi.2015.26.2.505
- Lee, W., Lee, D., Lee, Y. and Pawitan, Y. (2011b). Sparse canonical covariance analysis for high-throughput data. Statistical Applications in Genetics and Molecular Biology, 10, 1-24.
- Lee, Y. and Nelder, J. A. (1996). Hierarchical generalized linear models (with discussion). Journal of the Royal Statistical Society, Series B, 58, 619-678.
- Lee, Y. and Nelder, J. A. (2006). Double hierarchical generalized linear models (with discussion). Journal of the Royal Statistical Society, Series C, 55, 139-185. https://doi.org/10.1111/j.1467-9876.2006.00538.x
- Lee, Y., Nelder, J. A. and Pawitan, Y. (2006). Generalised Linear Models with Random Effects: Unified Analysis via h-Likelihood, London, Chapman and Hall.
- Lee, Y. and Oh, H. S. (2014). A new sparse variable selection via random-effect model. Journal of Multivariate Analysis, 125, 89-9. https://doi.org/10.1016/j.jmva.2013.11.016
- Paik, M. C., Lee, Y. and Ha, I. D. (2015). Frequentist inference on random effects based on summarizability. Statistica Sinica, 25, 11071132.
- Rondeau, V., Michiels, S., Liquet, B. and Pignon, J. P. (2008). Investigating trial and treatment heterogeneity in an individual patient data meta-analysis of survival data by means of the penalized maximum likelihood approach. Statistics in Medicine, 27, 1894-1910. https://doi.org/10.1002/sim.3161
- Shin, S. B. and Kim, Y. J. (2014). Statistical analysis of recurrent gap time events with incomplete observation gaps. Journal of the Korean Data & Information Science Society, 25, 327-336. https://doi.org/10.7465/jkdi.2014.25.2.327
- Thall and Vail (1990) Thall, P. F. and Vail, S. C. (1990). Some covariance models for longitudinal count data with overdispersion. Biometrics, 46, 657-671. https://doi.org/10.2307/2532086
- Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society, Series B, 58, 267-288.
- Tibshirani, R. (1997). The LASSO method for variable selection in the Cox model. Statistics in Medicine, 16, 385-395. https://doi.org/10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
- Wang, H., Li, R. and Tsai, C. L. (2007). Tuning parameter selectors for the smoothly clipped absolute deviation method. Biometrika, 94, 553-568. https://doi.org/10.1093/biomet/asm053
- Zhang, Y., Li, R. and Tsai, C. L. (2010). Regularization parameter selections via generalized information criterion. Journal of the American Statistical Association, 105, 312-323. https://doi.org/10.1198/jasa.2009.tm08013
- Zou, H. (2006). The adaptive Lasso and its oracle properties. Journal of the American Statistical Association, 101, 1418-1429. https://doi.org/10.1198/016214506000000735
- Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of Royal Statistical Society B, 67, 301-320. https://doi.org/10.1111/j.1467-9868.2005.00503.x
Cited by
- ML estimation using Poisson HGLM approach in semi-parametric frailty models vol.27, pp.5, 2016, https://doi.org/10.7465/jkdi.2016.27.5.1389
- Joint HGLM approach for repeated measures and survival data vol.27, pp.4, 2016, https://doi.org/10.7465/jkdi.2016.27.4.1083