• Title/Summary/Keyword: pem

Search Result 501, Processing Time 0.065 seconds

A Stochastic Bilevel Scheduling Model for the Determination of the Load Shifting and Curtailment in Demand Response Programs

  • Rad, Ali Shayegan;Zangeneh, Ali
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1069-1078
    • /
    • 2018
  • Demand response (DR) programs give opportunity to consumers to manage their electricity bills. Besides, distribution system operator (DSO) is interested in using DR programs to obtain technical and economic benefits for distribution network. Since small consumers have difficulties to individually take part in the electricity market, an entity named demand response provider (DRP) has been recently defined to aggregate the DR of small consumers. However, implementing DR programs face challenges to fairly allocate benefits and payments between DRP and DSO. This paper presents a procedure for modeling the interaction between DRP and DSO based on a bilevel programming model. Both DSO and DRP behave from their own viewpoint with different objective functions. On the one hand, DRP bids the potential of DR programs, which are load shifting and load curtailment, to maximize its expected profit and on the other hand, DSO purchases electric power from either the electricity market or DRP to supply its consumers by minimizing its overall cost. In the proposed bilevel programming approach, the upper level problem represents the DRP decisions, while the lower level problem represents the DSO behavior. The obtained bilevel programming problem (BPP) is converted into a single level optimizing problem using its Karush-Kuhn-Tucker (KKT) optimality conditions. Furthermore, point estimate method (PEM) is employed to model the uncertainties of the power demands and the electricity market prices. The efficiency of the presented model is verified through the case studies and analysis of the obtained results.

A Study on System and Application Performance Monitoring System Using Mass Processing Engine(ElasticSearch) (대량 처리 엔진(ElasticSearch)을 이용한 시스템 및 어플리케이션 성능 모니터링 시스템에 관한 연구)

  • Kim, Seung-Cheon;Jang, Hee-Don
    • Journal of Digital Convergence
    • /
    • v.17 no.9
    • /
    • pp.147-152
    • /
    • 2019
  • Infrastructure is rapidly growing as Internet business grows with the latest IT technologies such as IoT, BigData, and AI. However, in most companies, a limited number of people need to manage a lot of hardware and software. Therefore, Polestar Enterprise Management System(PEMS) is applied to monitor the system operation status, IT service and key KPI monitoring. Real-time monitor screening prevents system malfunctions and quick response. With PEMS, you can see configuration information related to IT hardware and software at a glance, and monitor performance throughout the entire end-to-end period to see when problems occur in real time.

Understanding of Polymer Electrolyte Membrane for a Unitized Regenerative Fuel Cell (URFC) (일체형 재생 연료전지(URFC)용 고분자 전해질 막의 이해)

  • Jung, Ho-Young
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.125-132
    • /
    • 2011
  • A unitized regenerative fuel cell (URFC) as a next-generation fuel cell technology was considered in the study. URFC is a mandatory technology for the completion of the hybrid system with the fuel cell and the renewable energy sources, and it can be expected as a new technology for the realization of hydrogen economy society in the $21^{st}$ century. Specifically, the recent research data and results concerning the polymer electrolyte membrane for the URFC technology were summarized in the study. The prime requirements of polymer electrolyte membrane for the URFC applications are high proton conductivity, dimensional stability, mechanical strength, and interfacial stability with the electrode binder. Based on the performance of the polymer electrolyte membrane, the URFC technology combining the systems for the production, storage, utilization of hydrogen can be a new research area in the development of an advanced technology concerning with renewable energy such as fuel cell, solar cell, and wind power.

Surface Charge and Morphological Characterization of Mesoporous Cellular Foam Silica/Nafion Composite Membrane by Using EFM (정전기력 현미경을 사용한 메조포러스 실리카/나피온 합성 이온교환막의 표면 전하 및 모폴로지 연구)

  • Kwon, Osung
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1173-1182
    • /
    • 2018
  • Mesoporous silica allows proper hydration of an ion exchange membrane under low relative humidity due to its strong hydrophilicity and structural characteristic. A mesoporous silica and Nafion composite membrane shows good proton conductivity under low relative humidity. An understanding of ion-channel formation and proton transfer through an ion-channel network in mesoporous silica and Nafion composite membranes is essential for the development and the optimization of ion exchange membranes. In this study, a mesoporous cellular foam $SiO_2/Nafion$ composite membrane is fabricated, and its proton conductivity and performance are measured. Also, the ion-channel distribution is analyzed by using electrostatic force microscopy to measure the surface charge density of the mesoporous cellular foam $SiO_2/Nafion$ composite membrane. The research reveals a few remarkable results. First, the composite membrane shows excellent proton conductivity and performance under low relative humidity. Second, the composite membrane is observed to form ion-channel-rich and ion-channel-poor region locally.

Trends and Prospects of Microalgae used for Food (식품에 이용되는 미세조류와 이를 이용한 식품 연구개발 동향 및 전망)

  • Kwak, Ho Seok;Kim, Ji Soo;Lee, Ja Hyun;Sung, Dong Eun
    • Journal of the Korean Society of Food Culture
    • /
    • v.36 no.1
    • /
    • pp.66-75
    • /
    • 2021
  • Microalgae are unicellular microorganisms inhabiting various ecosystems of the world, including marine and freshwater systems and extreme environments. Only a few species have been actively used as food. Microalgae are attracting attention as a means of biological CO2 reduction because they play an important role in absorbing atmospheric CO2 through their rapid growth by photosynthesis in water. Besides, microalgae are considered to be an eco-friendly energy source because they can rapidly produce biomass containing a large quantum of lipids that can be converted into biodiesel. Several microalgae, such as Chlorella spp., Spirulina spp. and Haematococcus spp. have already been commercialized as functional health supplements because they contain diverse nutrients including proteins, vitamins, minerals, and functional substances such as docosahexaenoic acid (DHA), β-glucan, phycocyanin, astaxanthin, etc. Moreover, they have the potential to be used as food materials that can address the protein-energy malnutrition (PEM) which may occur in the future due to population growth. They can be added to various foods in the form of powder or liquid extract for enhancing the quality characteristics of the foods. In this review, we analyzed several microalgae which can be used as food additives and summarized their characteristics and functions that suggest the possibility of a role for microalgae as future food.

Research Trend in Electrocatalysts for Anion Exchange Membrane Water Electrolysis (음이온교환막 수전해 촉매기술 동향)

  • Kim, Jiyoung;Lee, Kiyoung
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.2
    • /
    • pp.69-80
    • /
    • 2022
  • The anion exchange membrane (AEM) water electrolysis for high purity hydrogen production is attracting attention as a next-generation green hydrogen production technology by using inexpensive non-noble metal-based catalysts instead of conventional precious metal catalysts used in proton exchange membrane (PEM) water electrolysis systems. However, since AEM water electrolysis technology is in the early stages of development, it is necessary to develop research on AEM, ionomers, electrode supports and catalysts, which are key elements of AEM water electrolysis. Among them, current research in the field of catalysts is being studied to apply a previously developed half-cell catalyst for alkali to the AEM system, and the applied catalyst has disadvantages of low activity and durability. Therefore, this review presented a catalyst synthesis technique that promoted oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) using a non-noble metal-based catalyst in an alkaline medium.

Energy Management and Performance Evaluation of Fuel Cell Battery Based Electric Vehicle

  • Khadhraoui, Ahmed;SELMI, Tarek;Cherif, Adnene
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.37-44
    • /
    • 2022
  • Plug-in Hybrid electric vehicles (PHEV) show great potential to reduce gas emission, improve fuel efficiency and offer more driving range flexibility. Moreover, PHEV help to preserve the eco-system, climate changes and reduce the high demand for fossil fuels. To address this; some basic components and energy resources have been used, such as batteries and proton exchange membrane (PEM) fuel cells (FCs). However, the FC remains unsatisfactory in terms of power density and response. In light of the above, an electric storage system (ESS) seems to be a promising solution to resolve this issue, especially when it comes to the transient phase. In addition to the FC, a storage system made-up of an ultra-battery UB is proposed within this paper. The association of the FC and the UB lead to the so-called Fuel Cell Battery Electric Vehicle (FCBEV). The energy consumption model of a FCBEV has been built considering the power losses of the fuel cell, electric motor, the state of charge (SOC) of the battery, and brakes. To do so, the implementing a reinforcement-learning energy management strategy (EMS) has been carried out and the fuel cell efficiency has been optimized while minimizing the hydrogen fuel consummation per 100km. Within this paper the adopted approach over numerous driving cycles of the FCBEV has shown promising results.

Evaluation of exhaust emissions factor of agricultural tractors using portable emission measurement system (PEMS) (PEMS를 이용한 농업용 트랙터의 배기가스 배출계수 평가)

  • Wan-Soo Kim;Si-Eon Lee;Seung-Min Baek;Seung-Yun Baek;Hyeon-Ho Jeon;Taek-Jin Kim;Ryu-Gap Lim;Jang-Young Choi;Yong-Joo Kim
    • Journal of Drive and Control
    • /
    • v.20 no.3
    • /
    • pp.15-24
    • /
    • 2023
  • The aim of this study was to measure and evaluate the exhaust emission factors of agricultural tractors. Engine characteristics and three exhaust emissions (CO, NOx, PM) were collected under actual agricultural operating conditions. Experiments were performed on idling, driving, plow tillage, and rotary tillage. The load factor (LF) was calculated using the collected engine data, and the emission factor was analyzed using the LF and exhaust emissions. The engine characteristics and exhaust emissions were significantly different for each working condition, and in particular, the LF was significantly different from the currently applied 0.48 LF. The data distribution of exhaust emissions was different depending on the engine speed. In some conditions, the emission factor was higher than the exhaust emission standards. However, since most emission limit standards are values calculated using an engine dynamometer, even if the emission factor measured under actual working conditions is higher, it cannot be regarded as wrong. It is expected that the results of this study can be used for the inventory construction of a calculation for domestic agricultural machinery emissions in the future.

Synergistic Effect of Sulfonated Poly(Ether Ether Ketone)/Strontium Zirconate Perovskite Nanofiber-Based Novel Electrospun Composite Membranes for Fuel Cell Applications (연료전지용 술폰화된 폴리(이써 이써 케톤)/스트론튬 지르코네이트 페로브스카이트 나노섬유 기반 신규 전기방사 복합막의 시너지 효과)

  • SELVAKUMAR, KANAKARAJ;KIM, AE RHAN;YOO, DONG JIN
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.2
    • /
    • pp.164-175
    • /
    • 2022
  • In this work, sulfonated poly (ether ether ketone) (SPEEK) composite membranes including strontium zirconate (SrZrO3) were fabricated by the electrospinning method. Fourier-transform infrared spectroscopic analysis and X-ray diffraction analysis were used to identify the chemical structure and the crystallinity of SrZrO3 and electrospun composite membranes. The thermal stability of the pure SPEEK and SPEEK/SrZrO3 electrospun composite membranes were investigated by using thermogravimetric analysis. The physicochemical properties and proton conductivity were enhanced with the addition of different weight ratio of SrZrO3 nanofiller (2, 4 and 6 wt%) in SPEEK polymer. The optimized SPEEK/SrZrO3-4 electrospun membrane containing 4 wt% of SrZrO3 showed a high proton conductivity compared to other electrospun SPEEK/SrZrO3 composite membranes. The results indicate that electrospun composite membranes incorporating these perovskite nanofillers should be explored as potential candidates for use in proton exchange membrane fuel cells.

Distribution pattern and population dynamics of Brown trout (Salmo trutta) and Snow trout (Schizothorax richardsonii) in Punatsangchhu River, Bhutan

  • Rupesh Subedi;Dhan Bdr Gurung;Kinzang Namgay;Laxmi Sagar;Rinchen Dorji;Tshering Pem;Namkha Gyeltshen
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.7
    • /
    • pp.421-433
    • /
    • 2024
  • Among larger species of fish found in Punatsang chhu, Brown trout (Salmo trutta) and Snow trout (Schizothorax richardsonii) are notable species. Snow trout is a native species, whereas Brown trout is an introduced species. Brown trout is noted to have a negative impact on the population of native species worldwide. This study studied the population dynamics and structure of these species to detect if the introduced species affected the native species adversely. The study was conducted on a 30 km stretch of Punatsang chhu including its major and minor tributaries at about their confluences. In total, 56 sample plots of a 200 m sampling stretch were studied with a 200 m distance between each stretch. Length, weight, maturity, and sex data for both species were collected along with the habitat and water parameters. The two species were found to prefer different areas within a single stretch with a rare overlap. Snow trout were found to be distributed widely within the basin whereas Brown trout were only found in altitudes higher than 1,000 masl ($\overline{x}$ = 1,231.77) and in turbid waters (p = 0.009). Recruitment of Snow trout was not good whereas recruitment of Brown trout was good. Length-frequency graphs indicated good inverse J distribution for the Snow trout population and sporadic for Brown trout. There is an effect of Brown trout introduction to the Snow trout living in the study area. Places invaded by Brown trout have a lesser presence of Snow trout compared to places not invaded by these species.