• Title/Summary/Keyword: pegmatite

Search Result 68, Processing Time 0.023 seconds

The Anti-Inflammatory Effect of Pegmatite by in Vivo and in Vitro Study (In vivo 및 in vitro 시험을 통한 페그마타이트의 항염증 효과)

  • Lee, Min-Hyuk;Kim, Seok-Kwun;Kwon, Yong-Seok;Lee, Jang-Ho;Lee, Keun-Cheol
    • Archives of Plastic Surgery
    • /
    • v.37 no.1
    • /
    • pp.12-21
    • /
    • 2010
  • Purpose: This work aimed to elucidate the anti-inflammatory effect of pegmatite in vitro and in vivo. Methods: Author evaluated the suppressive effects of pegmatite on lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production, TNF-${\alpha}$ and IL-6 release in the RAW 264.7 murinemacrophages. Results: Treatment of RAW 264.7 cells with pegmatite significantly reduced LPS-stimulated NO production and inflammatory cytokine such as TNF-${\alpha}$ and IL-6 secretion in a concentration-dependent manner. Also pegmatite showed topical anti-inflammatory activity in the arachidonic acid (AA)-induced ear edema and acetic acid-induced increase in capillary permeability assessment in mice. It was also found that pegmatite (10 mg per ear in DW) inhibited arachidonic acid induced edema at 24 h more profoundly than 1 h by topical application. Furthermore, the vascular permeability increase induced by acetic acid was significantly reduced in mice that received pegmatite in 50 mg per mouse. Conclusion: Therefore the results of the present study suggest that pegmatite is a potent inhibitor of the LPS-induced NO and inflammatory cytokine in RAW 264.7 macrophages and showed anti-inflammatory activities in vivo animal model.

Mineralization in the Pegmatite of Mogok Metamorphic Belt, Myanmar (미얀마 모곡변성대 페그마타이트의 광화작용)

  • Oh, Il-Hwan;Heo, Chul-Ho;Choi, Sang-Hoon;Lee, Sunjin;Cho, Seong-Jun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.183-191
    • /
    • 2018
  • It is reported that Li-bearing minerals regarding as a promising battery industrial commodity occur in the Mogok metamorphic belt, Myanmar. Preliminary considerations on the mineralization of pegmatite occurrences within Mogok metamorphic belt such as Singu, Mogok and Momeik are as follows. In Singu area, lepidolite and rubellite occur together (Letpanhla No. 2 & 7 pegmatite) while rubellite only occur (Letpanhla No. 4 pegmatite). In Mogok area, lepidolite and rubellite occur together (Sakangyi pegmatite). In Momeik area, lepidolite and rubellite occur together (Pheyeou pegmatite) while rubellite only occur (Khetchel Ywar Thit pegmatite). In the future, it is estimated that it is necessary to implement the detailed exploration for the resource evaluation of lithium-bearing mineral targeted for the pegmatite of Mogok metamorphic belt.

Geochemistry of Uranium and Thorium Deposits from the Kyemyeongsan Pegmatite (계명산층 페그마타이트에 수반되는 우라늄·토륨 광상의 지구화학적 특성)

  • Park, Maeng-Eon;Kim, Gun-Soo
    • Economic and Environmental Geology
    • /
    • v.31 no.5
    • /
    • pp.365-374
    • /
    • 1998
  • Economic U- and Th-bearing pegmatite deposits occur in the Kyemyeongsan Formation, and are spatially closely associated with the Carboniferous alkali granite. The pegmatite is lithochemically alkaline and peralumious, and consists mainly of potassic feldspar and quartz with allanite and U- and Th-bearing minerals. Paragenetic stages of mineralization in the pegmatite are divided as follows: early silicate mineralization, main rare metal mineralization, and late silicate mineralization. Thorite, euxenite, fergusonite and uranpyrochlore are the predominant U- and Th-bearing minerals. Both the enrichments of Nb, Y, Th, U, and Ta and the depletions of Hf, Ba, and Rb in the pegmatite were resulted from magmatic differentiation. The increases of Na and Ca in uranpyrochlore, of Th and U in fergusonite, of Si, Th, U and Pb in thorite, and of Nb and Y in euxenite were possibly resulted from both later internal fractionation and hydrothermal alteration. The variation of chemical composition in a mineral species reflects the different pysico-chemical conditions during the crystallization.

  • PDF

Fractionation and Rare-Element Mineralization of Kenticha Pegmatite, Southern Ethiopia (에티오피아 남부 켄티차 페그마타이트의 분화양상과 희유원소 광화작용)

  • Kim, Eui-Jun;Kim, Soo-Young;Moon, Dong-Hyeok;Koh, Sang-Mo
    • Economic and Environmental Geology
    • /
    • v.46 no.5
    • /
    • pp.375-390
    • /
    • 2013
  • The Kenticha rare-element (Ta-Li-Nb-Be) mineralized zone is located in ophiolitic fold and thrust complex of southern Ethiopia and was firstly discovered by joint exploration program of Ethiopia-Soviet in 1980s. It includes Dermidama, Kilkele, Shuni Hill, Kenticha, and Bupo pegmatites from south to north. The Kenticha pegmatite intruded parallel to NS-striking serpentinite and talc-chlorite schist, and is exposed approximately 2 km length and 400-700 m width. The Kenticha pegmatite is internally zoned and subdivided into lower quartz-muscovite-albite granite, intermediate muscovite-quartz-albite-microcline pegmatite, and upper spodumene-quartz-albite pegmatite, based on their mineral assemblage. The major, trace elements (e.g., Rb, Li, Nb, Ta, and Ga), and element ratios (e.g., K/Rb, Nb/Ta, Mg/Li, and Al/Ga) suggest that the fractionation and solidification of pegmatite have progressed from the lower towards upper pegmatite. In contrast, unlike general magmatic fractionation, Mg/Li ratios of the Kenticha pegmatite tend to be increased towards the upper pegmatite. It may result from post-magmatic hydrothermal alteration and/or interaction with upper ultramafic rock. Rare-element mineralization in Kenticha pegmatite concentrates on the upper pegmatite, which contains up to 3.0 wt % $Li_2O$, 3,780 ppm Rb, 111 ppm Cs, 1,320 ppm Ta, and 332 ppm Nb. Ore minerals in Kenticha pegmatite mostly include tantalite, spodumene, and lepidolite, and tantalite has an association with coarser quartz-spodumene and relatively fine sacchroidal albite. The tantalite is classified into Mn-tantalite as a function of $Mn^*[Mn/(Mn+Fe)]$ and $Ta^*[Ta/(Ta+Nb)]$ values. Its compositions ($Mn^*$, $Ta^*$, and Nb/Ta) between coarse and fine tantalites are different and the former is strongly enriched in Ta and depleted in Nb compared to latter one. In conclusion, rare-element mineralization in the Kenticha pegmatite may has occurred in the latest stage of magmatic fractionation.

Tin, Tungsten Mineralization in Bonghwa-Uljin Area (봉화(奉化)-울진지역(蔚珍地域)의 석(錫), 중석광화작용(重石鑛化作用))

  • Park, Hee-In;Lee, Sang Man
    • Economic and Environmental Geology
    • /
    • v.17 no.1
    • /
    • pp.1-15
    • /
    • 1984
  • The tin and tungsten deposits are embedded around the age unknown Buncheon granite gneiss which intruded the Precambrian schists, gneiss and amphibolites in Bonghwa-Uljin area. Pegmatite dike swarm developed intermittently about 4km along the southern border of Buncheon granite gneiss at Wangpiri area. Thickness of pegmatite dikes range from 0.5 to 15m. Pegmetite is consisted of quartz, microcline, albite, muscovite and frequently topaz, tourmaline, garnet, fluorite, fluorapatite and lepidolite. Pegmatite dikes are greisenized, albitized and microclinized along dike walls. Cassiterites are irregularly disseminated through the intensely greienized and albitized parts of the pegmatite. Cassiterite crystals are mainly black to dark brown and contain considerable Ta and Nb. Average Ta and Nb contents of the four cassiterite samples are 5300 and 3400 ppm. The Ssangjeon tungsten deposits is embedded within the pegmatite dike developed along the northern contact of Buncheon granite gneiss with amphibolite. This pegmatite developed 2km along the strike and thickness varies from 10 to 40m. Mineral constituents of the pegmatite are quartz, microcline, plagioclase, muscovite, biotite, tourmaline and garnet. Ore minerals are ferberite and scheelite with minor amount of molybdenite, arsenopyrite, pyrrhotite, pyrite, chalcopyrite, sphalerite, galena, pentlandite, bismuthinite, marcasite, and fluorite. Color and occurrence of quartz reveals that quartz formed at three different stages; quartz I, the earliest milky white quartz formed as a rock forming mineral of simple pegmatite; quartz II, gray to dark gray quartz which replace the minerals associated with quartz I; quartz III, the latest white translucent quartz which replace the quartz I and H. All of the ore minerals are precipitated during the quartz II stage. Fluid inclusion in quartz I and II are mainly gaseous inclusions and liquid inclusions are contained in quartz III and fluorite. Salinities of the inclusion in quartz I and II ranges from 4.5 to 9.5 wt. % and 5.1 to 6.0 wi. % equivalent NaCl respectively. Salinities of the inclusion in fluorite range from 3.5 to 8.3 wt. % equivalent NaCl. Homogenization temperatures of the inclusion in quartz I, II and III range from 415 to $465^{\circ}C$, from 397 to $441^{\circ}C$ and 278 to $357^{\circ}C$. Data gathered in this study reveals that tin and tungsten mineralization in this area are one of prolonged event after the pegmatite formation around Buncheon granite gneiss.

  • PDF

Effects of Feeding Clay Mineral Pegmatite and Vitamin A on Growth Performance, Serum Profile and Carcass Characteristics of Fattening Hanwoo Steers (거정석과 비타민 A 급여가 거세한우의 성장, 혈액성상 및 도체특성에 미치는 영향)

  • Kim, B.K.;Go, S.J.;Kim, Y.J.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.283-292
    • /
    • 2005
  • This study was conducted to determine the effect of dietary supplements of mineral(pegmatite) powder on the growth performance and meat quality during 14 month in 24 heads of Hanwoo steers. The Hanwoo steers were randomly allotted 3 treatments(8 heads I treatment); Control(0 %), Tl(supplemented with pegmatite 2.0% and vitamin A 0.2 %), T2(supplemented with pegmatite 2.0 %). The body weights of control, Tl and T2 were 646.2 kg, 624.0 kg and 656.8 kg on 26 month respectively. The daily gain was higher in T2(0.87 kg) than the others. The concentration of vitamin A(retinol) in the blood serum in T1(61.75 $\ell$ I dl) was higher than' control(41.93$\ell$ I dl) and T2(46.10mg I dl)(P < 0.05). The concentration of total cholesterol was lowest in TI (130.17mgI di) than the others(P< 0.05). Marbling scores and meat quality grade were to significnatly higher in T2(5.50 and 3.50) than control(2.71 and 1.83) and Tl(3.00 and 2.00)(P< 0.05).

Mineralogy, Geochemistry, and Evolution of the Mn-Fe Phosphate Minerals within the Pegmatite in Cheolwon, Gyeonggi Massif (경기육괴 철원지역 페그마타이트 내 망간-철 인산염광물의 광물-지화학적 특징 및 진화과정)

  • Kim, Gyoo Bo;Choi, Seon Gyu;Seo, Jieun;Kim, Chang Seong;Kim, Jiwon;Koo, Minho
    • Economic and Environmental Geology
    • /
    • v.50 no.3
    • /
    • pp.181-193
    • /
    • 2017
  • Mn-Fe phosphate mineral complexes included within the pegmatite are observed at Jurassic Cheolwon two-mica granite in Gyeonggi Massif, South Korea. The genetic evolution between the Cheolwon two-mica granite and pegmatite, and various trend of Mn-Fe phosphate minerals is made by later magmatic, hydrothermal, and weathering process based on mineralogical, geochemical analysis. The Cheolwon two-mica granite is identified as S-type granite, considering its chemical composition (metaluminous ~ peraluminous), post-collisional environment, low magnetic susceptibility, and existence of biotite and muscovite. The K-Ar age (ca. 153 Ma) of pegmatite is well coincident with age of the Cheolwon two-mica granite ($151{\pm}4Ma$). It indicates that these two rocks are originated from the same magma. Pegmatite indicates the LCT geochemical signature, and was classified as muscovite-rare element class / Li subclass / beryl type / beryl-columbite-phosphate subtype pegmatite. The triplite $\{(Fe^{2+}{_{0.4}},Mn_{1.6})(PO_4)(F_{0.9})\}$ is dominant phosphates in later magmatic stage which partly altered to leucophosphite $\{KFe^{3+}{_2}(PO_4)_2OH{\cdot}2H_2O\}$ and jahnsite $\{(Fe^{3+}{_{0.7}},Mn_{2.3})(PO_4)_2OH{\cdot}4H_2O\}$ by hydrothermal alteration. In particular, near fractures, the triplite has been separatelty replaced by the phosphosiderite ($Fe^{3+}PO_4{\cdot}2H_2O$) and Mn-oxide minerals during weathering stage.

Mineral Paragenesis and Fluid Inclusion Study of Ssangjeon Tungsten Deposits (쌍전중석광상(雙田重石鑛床)의 광물공생(鑛物共生)과 유체포유물연구(流體包有物硏究))

  • Youn, Seok Tai;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.15 no.4
    • /
    • pp.221-233
    • /
    • 1982
  • Ssangjeon tungsten ore deposits is a complex pegmatite deposits embedded along the contact between pre-Cambrian Buncheon granite gneiss and amphibolite. This pegmatite vein developed 2 km along the strike and thickness varies from 10m to 40m. Mineral constituent of the normal pegmatite are quartz, microcline, plagioclase, muscovite, biotite, tourmaline and garnet. The vein paragenesis is complicated by repeated deposition of quartz but three distinct depositional stage can be recognized. Quartz A stage is the stage of the earliest milky white quartz deposition as a rock forming mineral of normal pegmatite. Quartz B stage is the stage of gray to dark gray quartz replace earlier formed normal pegmatite minerals. Quartz C stage is the stage of latest white translucent massive quartz replace quartz A and B. Tungsten ore minerals and other sulfide minerals were precipitated during quartz B stage. Ore minerals are ferberite and scheelite. Minor amount of molybdenite, arsenopyrite, pyrrhotite, pyrite, chalcopyrite, sphalerite, galena, pentlandite, bismuthinite, native bismuth and marcasite accompanied. Fluid inclusion in quartz A and B are gaseous inclusions and liquid inclusions are contained in quartz C as a primary inclusions. Salinity of inclusions in quartz A and B ranges from 4.5 to 9.5 wt. % and from 5.1 to 6.0 wt. % equivalent NaCl respectively. Homogenization temperature of quartz A; quartz B and quartz C ranges from 415 to $465^{\circ}C$, from 397 to $441^{\circ}C$ and from 278 to $357^{\circ}C$. $CO_2$ content of the ore fluid increased at the ends of quartz B stage.

  • PDF

Petrochemical Study on the Precambrian Granitic Rocks in the Basement Area of Hambaeg Basin (함백익지(咸白益地) 기반지역(基盤地域)에 분포(分布)하는 선(先)캠브리아 화강암질암류(花崗岩質岩類)의 암석화학적(岩石化學的) 연구(硏究))

  • Yun, Hyun Sao;Lee, Dai Sung
    • Economic and Environmental Geology
    • /
    • v.19 no.1
    • /
    • pp.35-55
    • /
    • 1986
  • The area of this study is located in the Sang dong district, Youngwol Gun, Kangwon Do, where the Ogcheon fold belt comes into contact with the Ryongnam massif. The area is covered by the Precambrian metasedimentary rocks of Yulri Group in the south from the line of Ungyosan-Maebongsan-Jansan-Taebaegsan Mountains and by the Cambro-Ordovician sedimentary rocks of Choseon Supergroup in the north. The Choseon Supergroup unconformably overlies the Yulri group. Several granitic intrusives occur in the Precambrian and Cambro-Ordovician terrain. The purpose of this study is to clarify the geochronology, mineralogical composition, geochemical characteristics, petrogenesis and tectonic settings of the Precambrian granitic rocks, and to evaluate the P.T. conditions of granitic intrusions. The K/Ar ages obtained from the muscovite of Nonggeori Granite, Naedeogri granite and pegmatite intruded into the Yulri Group are Early Proterozoic ($1805{\pm}18Ma$ to $1642{\pm}23Ma$), and those from the migmatitic pegmatite are Late Carboniferous ($305{\pm}4Ma$), respectively. The Precambrian granitic rocks are characterized by the presence of muscovite, tourmaline and grey feldspar with faint lineation of mafic minerals. In terms of mineralogical and chemical composition, the granitic rocks are felsic, calc-alkalic, peraluminous and S-type (ilmenite-series). The geochemical characteristics of major and trace elements indicate that the granitic rocks belong to syn-collision setting at the compressional plate margin. They were formed by progressive melting of relatively homogeneous crustal materials under 1~3kb and $670^{\circ}{\sim}720^{\circ}C$ in aqueous fluid conditions, and the Naedeogri granite was more fractionated than the Nonggeori granite. During the Taebaeg disturbance, Nonggeori granite, Naedeogri granite and pegmatite were intruded and emplaced into the Yulri Group. Migmatitic pegmatite occurring in the southwestern area, however, gave much younger muscovite age than the pegmatite intruded into the Yulri Group in rest of the area did, that might be due to the regional metamorphism of the Post-Choseon disturbance. The Geodo granitic mass and the Imog granite were intruded during the Bulgugsa disturbance.

  • PDF

A Preliminary Study on the Post-magmatic Activities Occurring at the Gonamsan Gabbroic Rocks in the Pocheon Area (포천지역 고남산 반려암질암 내 발생하는 후기 화성활동에 관한 예비 연구)

  • Lee, Ji-Hyun;Kim, Eui-Jun;Shin, Dongbok
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.77-95
    • /
    • 2022
  • The Gonamsan gabbroic complex in the Pocheon area, northwestern region of South Korea consists of a variety types of gabbroic rocks and associated Fe-Ti oxide deposits caused by magmatic differentiation. Post-magmatic intrusions (i.e., gabbroic pegmatite and pyroxene-apatite-zircon rocks) partly intruded into the gabbroic rocks. The gabbroic pegmatite occurs in monzodiorite and oxide gabbro of the complex, intimately and spatially associated with high-grade lenticular Fe-Ti oxide mineralization. The pegmatite can be subdivided into plagioclase-amphibole and pyroxene-olivine pegmatite, in which the contact surface is sharp. The plagioclase-amphibole pegmatite comprises plagioclase and amphibole, with lesser amount of pyroxene, ilmenite, sphene, apatite, and biotite. The pegmatite shows plagioclase-amphibole intergranular texture, in which the open space formed by large plagioclase laths (An2-26Ab72-98Or0-2) are infilled by amphibole. The pyroxene-olivine pegmatite is dark gray to black in color and also contains magnetite, ilmenite, spinel, apatite, and calcite as a minor component. The pyroxene (En35-36Fs8-9Wo55) and olivine (Fo84-85Fa15-16) partly show a poikilitic texture defined by smaller euhedral olivine enclosed by coarser clinopyroxene. Fe-Ti oxide minerals consist mainly of magnetite and ilmenite that are found interstitially to earlier formed silicates. Subsequently, they are encompassed by reaction rim (almost of amphibole and biotite) along the boundary with surrounding silicate minerals. Under the microscope, magnetite contains a lot of oxyexsolved ilmenite (trellis type) and spinel, and thereby is weakly enriched in magnetite-compatible elements such as Ti, Al, Mg, and V. The structure and textures at the contact zone as well as mineralogical disequilibrium between gabbroic pegmatite and the host gabbroic rocks suggest that the pegmatite may form as a result of accumulation from Fe-rich melt (or liquid) that occurred somewhere rather than in situ form from the host gabbroic rock during the magmatic differentiation. Consequently, the preliminary study suggests that further study on the post-magmatic activities can not only help us improve our understanding on magmatic fractionation but also provide critical information on Fe-Ti oxide mineralization in gabbroic rocks resulting from the magmatic differentiation.