• Title/Summary/Keyword: peeling strength

Search Result 65, Processing Time 0.028 seconds

Concrete Specification and Mixing Design for the Reduction of Slab Defects in Underground Parking Lot (지하주차장 슬래브 하자 저감을 위한 콘크리트 규격 및 배합설계)

  • Kim, Han-Sic;Ha, Jung-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.235-236
    • /
    • 2023
  • Concrete surfaces have weak surface strength due to bleeding and laitance, and problems such as peeling, cracking, and cracking may occur. In particular, underground parking lots can be said to be more vulnerable to peeling, breaking, and cracking if excessive loading of materials and equipment movement are not managed at the initial age after placing of concrete. Cracks, peeling, and cracking problems in slab concrete in underground parking lots of apartments can lead to leakage problems and affect finishing materials constructed on top of topping concrete, reducing the performance required for waterproof materials. Therefore, in this study, the bleeding and surface strength according to the standard of topping concrete and the use of admixture were reviewed to solve the crack, peeling, and cracking problems among the types of defects in underground parking lot slab concrete. As a result, it was derived that the optimal concrete compressive strength is 30MPa or more, and it is a reasonable performance design method to prohibit the substitution of admixtures.

  • PDF

Investigation of bonding properties of Al/Cu bimetallic laminates fabricated by the asymmetric roll bonding techniques

  • Vini, Mohamad Heydari;Daneshmand, Saeed
    • Advances in Computational Design
    • /
    • v.4 no.1
    • /
    • pp.33-41
    • /
    • 2019
  • In this study, 2-mm Al/Cu bimetallic laminates were produced using asymmetric roll bonding (RB) process. The asymmetric RB process was carried out with thickness reduction ratios of 10%, 20% and 30% and mismatch rolling speeds 1:1, 1:1.1 and 1:1.2, separately. For various experimental conditions, finite element simulation was used to model the deformation of bimetallic Al/Cu laminates. Specific attention was focused on the bonding strength and bonding quality of the interface between Al and Cu layers in the simulation and experiment. The optimization of mismatch rolling speed ratios was obtained for the improvement of the bond strength of bimetallic laminates during the asymmetric RB process. During the finite element simulation, the plastic strain of samples was found to reach the maximum value with a high quality bond for the samples produced with mismatch rolling speed 1:1.2. Moreover, the peeling surfaces of samples around the interface of laminates after the peeling test were studied to investigate the bonding quality by scanning electron microscopy.

Quadrant Analysis in Correlation between Mechanical and Electrical Properties of Low-Temperature Conductive Film Bonded Crystalline Silicon Solar Cells

  • Baek, Su-Wung;Choi, Kwang-Il;Lee, Woo-Hyoung;Lee, Suk-Ho;Cheon, Chan-Hyuk;Hong, Seung-Min;Lee, Kil-Song;Shin, Hyun-Woo;Yan, Yeon-Won;Lim, Cheolhyun
    • Current Photovoltaic Research
    • /
    • v.3 no.1
    • /
    • pp.1-4
    • /
    • 2015
  • In this study, we analyzed the correlation between mechanical and electrical properties of low-temperature conductive film (LT-CF) bonded silicon solar cells by a quadrant analysis (horizontal axis (peeling strength), vertical axis (power loss)). We found that a series of points with various bonding parameters such as bonding temperature, pressure and time were distributed in the different three regimes; weak regime (Q2: weak bonding strength and high power loss), moderate regime (Q4 : strong bonding strength and low power loss) and hard regime (Q3 : weak bonding strength and low power loss). Using this analogous technique, it was possible to fabricate the LT-CF bonded silicon solar cells with the various conditions displayed in Q3 of the quadrant plots, possessing the peeling strength of ~ 1N/mm and power loss of 2~3%.

Retrofitting by adhesive bonding steel plates to the sides of R.C. beams. Part 2: Debonding of plates due to shear and design rules

  • Oehlers, Deric. J.;Nguyen, Ninh T.;Bradford, Mark A.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.5
    • /
    • pp.505-518
    • /
    • 2000
  • A major cause of premature debonding of tension face plates is shear peeling (Jones et al. 1988, Swamy et al. 1989, Ziraba et al. 1994, Zhang et al. 1995), that is debonding at the plate ends that is associated with the formation of shear diagonal cracks that are caused by the action of vertical shear forces. It is shown in this paper how side plated beams are less prone to shear peeling than tension face plated beams, as the side plate automatically increases the resistance of the reinforced concrete beam to shear peeling. Tests are used to determine the increase in the shear peeling resistance that the side plates provide, and also the effect of vertical shear forces on the pure flexural peeling strength that was determined in the companion paper. Design rules are then developed to prevent premature debonding of the plate ends due to peeling and they are applied to the strengthening and stiffening of continuous reinforced concrete beams. It is shown how these design rules for side plated beams can be adapted to allow for propped and unpropped construction and the time effects of creep and shrinkage, and how side plates can be used in conjunction with tension face plates.

Characteristics of Change in Properties of Self-Adhesive Butyl Rubber Waterproofing Sheet by Increasing the Amount of Reclaimed Rubber (자착식 부틸고무 방수시트의 재생고무 증량 배합에 따른 물성변화 특성)

  • Choi, Su-Young;Park, Jin-Sang;Choi, Sung-Min;Kwon, Young-Hwa;Kim, Young-Keun;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.252-253
    • /
    • 2021
  • In this study, butyl rubber, which is the main material constituting the self-adhesive butyl rubber waterproofing sheet, was mixed with reclaimed rubber, and tensile strength, tear strength, peeling resistance strength, and adhesion strength were measured for sample prepared by mixing ratio. As a result, it was confirmed that peeling resistance strength and adhesion strength decreased as the reclaimed rubber content increased, and tensile strength and tear strength did not change significantly.

  • PDF

Key Parameter of Peel-off Test for Reliability Assessment of Toner Film (토너 박막의 신뢰성 평가를 위한 Peel-off Test의 주요인자)

  • Kim, Kwang-Il;Kim, Dae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1567-1573
    • /
    • 2010
  • In printing systems, the reliability of printed material depends on the ability of the toner film to remain adhered to the paper surface. In order to measure the strength between the toner film and the paper surface, a peel-off test is often performed. After conducting the test, the amount of toner film remaining on the paper is measured in order to determine the interfacial strength. The results of this test can be affected by many factors such as the peeling rate, weight of the roller used, and dwell time of tape. Sensitivity analysis was performed with respect to peeling rate, weight of roller and dwell time of tape at different levels. It was found that the interfacial strength increased with an increase in these main parameters. On the other hand, the trend with respect to the percentage of toner loss was different. Further, the interfacial strength and percentage of toner loss were significantly affected by the peeling rate.

Skin Improvement Effects of Chemical Peeling Using Lactic Acid and Glycolic Acid, and Physical Peeling Using Diamonds and Crystals (젖산과 글리콜산을 이용한 화학적 필링, 물리적 필링(다이아몬드 필링과 크리스탈 필링)에 따른 피부개선 효과)

  • Kim, Hyun Kyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.487-497
    • /
    • 2020
  • The study examined the effects, strength, and weakness of chemical peeling and physical peeling, which are some types of peelings that are commonly used for cosmetic skin management for women. For this study, of which the study period was from November 1 to December 27, 2011, 20 female subjects with the compound skin type were investigated. Ten women were assigned to the chemical peeling group, and the other 10 were assigned to the physical peeling group. The experiment continued for six weeks, with one test session per week, totaling six tests. During each session, a skin measurement instrument was used to measure the oil, keratin, pore, wrinkles, and pigments. The results of the tests showed that, in the case of chemical peeling, both glycolic acid peeling and lactic acid peeling were effective in preserving the skin moisture. With physical peelings, crystal peeling was more effective on wrinkles, while diamond peeling was more effective in keratin and pigment improvement. A comparison of the peeling with different media revealed physical peelings to have more effect on more items, but chemical peeling was more effective in moisture and oil changes.

Effects of Film Stack Structure and Peeling Rate on the Peel Strength of Screen-printed Ag/Polyimide (박막 적층 구조 및 필링 속도가 스크린 프린팅 Ag/Polyimide 사이의 필 강도에 미치는 영향)

  • Lee, Hyeonchul;Bae, Byeong-Hyun;Son, Kirak;Kim, Gahui;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.59-64
    • /
    • 2022
  • Effects of film stack structure and peeling rate on the peel strength of screen-printed (SP) Ag/polyimide (PI) systems were investigated by a 90° peel test. When PI film was peeled at PI/SP-Ag and PI/SP-Ag/electroplated (EP) Cu structures, the peel strength was nearly constant regardless of the peeling rate. When EP Cu was peeled at EP Cu/SP-Ag/PI structure, the peel strength continuously increased as peeling rate increased. Considering uniaxial tensile test results of EP Cu/SP-Ag film with respect to loading rate, the increase of 90° plastic bending energy and peel strength was attributed to increased flow stress and toughness. On the other hand, viscoelastic PI film showed little variation of flow stress and toughness with respect to loading rate, which was assumed to result in nearly constant 90° plastic bending energy and peel strength.

Effect of Tio2 particles on the mechanical, bonding properties and microstructural evolution of AA1060/TiO2 composites fabricated by WARB

  • Vini, Mohamad Heydari;Daneshmand, Saeed
    • Advances in materials Research
    • /
    • v.9 no.2
    • /
    • pp.99-107
    • /
    • 2020
  • Reinforced aluminum alloy base composites have become increasingly popular for engineering applications, since they usually possess several desirable properties. Recently, Warm Accumulative Roll Bonding (WARB) process has been used as a new novel process to fabricate particle reinforced metal matrix composites. In the present study, TiO2 particles are used as reinforcement in aluminum metal matrix composites fabricated through warm accumulative roll bonding process. Firstly, the raw aluminum alloy 1060 strips with TiO2 as reinforcement particle were roll bonded to four accumulative rolling cycles by preheating for 5 min at 300℃before each cycle. The mechanical and bonding properties of composites have been studied versus different volume contents of TiO2 particles by tensile test, peeling test and vickers micro-hardness test. Moreover, the fracture surface and peeling surface of samples after the tensile test and peeling test have been studied versus different amount of TiO2 volume contents by scanning electron microscopy. The results indicated that the strength and the average vickers micro-hardness of composites improved by increasing the volume content of TiO2 particles and the amount of their elongation and bonding strength decreased significantly.

Non-Linear FEM Analysis Study of the Peeling Failure of the RC Beams Strengthened by GFRP (유리섬유쉬트로 휨보강한 보의 박리파괴 거동에 관한 비선형 FEM 해석)

  • 강인석;최기선;유영찬;김긍환;이한승;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.335-338
    • /
    • 2003
  • Flexural test and parametric study by FEM analysis on 6.0m long reinforced concrete beams strengthened by GFRP are reported in these tests. The selected variables are strengthened plate length, plate thickness. The effects of these variables are discussed. The results generally indicate that the flexural strength of strengthened beams is increased. The results of FEM analysis show that the more strengthening GFRP is the more stress of GFRP is decrease when failure mode is peeling failure.

  • PDF