DOI QR코드

DOI QR Code

Effects of Film Stack Structure and Peeling Rate on the Peel Strength of Screen-printed Ag/Polyimide

박막 적층 구조 및 필링 속도가 스크린 프린팅 Ag/Polyimide 사이의 필 강도에 미치는 영향

  • Lee, Hyeonchul (STATS ChipPAC Korea LTD.) ;
  • Bae, Byeong-Hyun (VITZROTECH Co., Ltd.) ;
  • Son, Kirak (DMC Convergence Research Department, Electronics and Telecommunications Research Institute) ;
  • Kim, Gahui (School of Materials Science and Engineering, Andong National University) ;
  • Park, Young-Bae (School of Materials Science and Engineering, Andong National University)
  • 이현철 ((주)스태츠칩팩코리아) ;
  • 배병현 ((주)비츠로테크) ;
  • 손기락 (한국전자통신연구원 DMC융합연구단) ;
  • 김가희 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 박영배 (안동대학교 신소재공학부 청정에너지소재기술연구센터)
  • Received : 2022.05.25
  • Accepted : 2022.06.14
  • Published : 2022.06.30

Abstract

Effects of film stack structure and peeling rate on the peel strength of screen-printed (SP) Ag/polyimide (PI) systems were investigated by a 90° peel test. When PI film was peeled at PI/SP-Ag and PI/SP-Ag/electroplated (EP) Cu structures, the peel strength was nearly constant regardless of the peeling rate. When EP Cu was peeled at EP Cu/SP-Ag/PI structure, the peel strength continuously increased as peeling rate increased. Considering uniaxial tensile test results of EP Cu/SP-Ag film with respect to loading rate, the increase of 90° plastic bending energy and peel strength was attributed to increased flow stress and toughness. On the other hand, viscoelastic PI film showed little variation of flow stress and toughness with respect to loading rate, which was assumed to result in nearly constant 90° plastic bending energy and peel strength.

연성인쇄회로기판에 사용되는 스크린 프린팅(screen-printing, SP) Ag/폴리이미드(polyimide, PI) 구조의 필 테스트 시 필링 속도 및 박막 적층 구조가 필 강도에 미치는 영향을 분석하기 위해, PI/SP-Ag, PI/SP-Ag/전해도금 Cu, 전해도금 Cu/SP-Ag/PI의 3가지 적층 구조에 대해 필링 속도에 따른 90° 필 테스트를 수행하였다. PI 박막을 필링하는 2가지 구조에서는 필링 속도에 상관없이 필 강도가 거의 일정하게 유지된 반면, Cu/Ag 금속 박막 필링 구조에서는 필링 속도가 증가할수록 필 강도가 크게 증가하는 경향을 보였다. 이는 필링 속도에 따른 90° 굽힘 소재의 소성변형에너지 차이에 기인한 것으로 판단된다. 인장속도에 따른 인장 시험 결과, 변형 속도 증가에 따른 Cu/Ag 금속 박막의 유동응력 및 인성 증가가 Cu/Ag/PI 구조에서의 필링 속도에 따른 금속 박막의 90° 굽힘 소성변형에너지 및 필 강도 증가의 주 원인으로 판단된다. 반면, 점탄성 소재인 PI의 경우 변형 속도에 따른 기계적물성 차이가 금속에 비해 상대적으로 작아서, PI/Ag 및 PI/Ag/Cu 구조에서는 필링 속도에 따른 PI의 90° 굽힘 소성변형에너지 및 필 강도 변화가 상대적으로 적은 것으로 판단된다.

Keywords

Acknowledgement

이 논문은 안동대학교 기본연구지원사업에 의하여 연구되었음.

References

  1. B. I. Noh, S. B. Jung, "Effect of Ni-Cr Layer on Adhesion Strength of Flexible Copper Clad Laminate", J. Electron. Mater., 38(1), 46-53 (2009). https://doi.org/10.1007/s11664-008-0543-z
  2. J. Jang, T. Earmme, "Interfacial study of polyimide/copper system using silane-modified polyvinylimidazoles as adhesion promoters", Polymer, 42(7), 2871-2876 (2001). https://doi.org/10.1016/S0032-3861(00)00701-1
  3. K. W. Lee, A. Viehbeck, "Wet-process surface modification of dielectric polymers: Adhesion enhancement and metallization", IBM J. Res. Dev., 38(4), 457-474 (1994). https://doi.org/10.1147/rd.384.0457
  4. S. C. Park, Y. B. Park, "Effect of CF4 plasma treatment on the interfacial fracture energy between inkjet-printed Ag and flexible polyimide films", Surf. Coat. Technol., 205(2), 423-429 (2010). https://doi.org/10.1016/j.surfcoat.2010.07.005
  5. S. C. Park, K. J. Min, K. H. Lee, Y. Jeong, and Y. B. Park, "Effects of Temperature and Humidity Treatment Conditions on the Interfacial Adhesion Energy between the Electroless-Plated Ni and Polyimide", Jpn. J. Appl. Phys., 49(851), 08JK01 (2010). https://doi.org/10.1143/JJAP.49.08JK01
  6. S. C. Park, Y. B. Park, "Ag Pore Effect on the Interfacial Debonding Energy of an Inkjet-Printed Ag Film on Polyimide", J. Kor. Phys. Soc., 54(3), 1288-1292 (2009). https://doi.org/10.3938/jkps.54.1288
  7. S. C. Park, S. H. Cho, H. C. Jung, J. W. Jung, and Y. B. Park, "A study on Improvement of Interfacial Adhesion Energy of Inkjet-printed Ag Thin film on Polyimide by CF4 Plasma Treatment", Kor. J. Mater. Res., 17(4), 215-221 (2007). https://doi.org/10.3740/MRSK.2007.17.4.215
  8. Y. B. Park, I. S. Park, and J. Yu, "Interfacial Fracture Energy in the Cu/Cr/polyimide system", J. Kor. Inst. Met & Mater., 37(2), 238-243 (1999).
  9. Association Connecting Electronics Industries (IPC), "Test Methods Manual", 2.4.9, Bannockburn, US (1998).
  10. Japan Industrial Standards (JIS), "Test methods for flexible printed wiring boards", Japan (1994).
  11. American Society for Testing and Materials (ASTM), "Standard Test Method for Peel Resistance of Adhesives (T-Peel Test)", West Conshohocken, PA (2001).
  12. American Society for Testing and Materials (ASTM), "Standard Test Method for Peel Adhesion of Pressure-Sensitive Tape, West Conshohocken, PA (1999).
  13. Y. B. Park, I. S. Park, and J. Yu, "Interfacial fracture energy measurements in the Cu/Cr/polyimide system", Mater. Sci. Eng., A266(1-2), 261-266 (1999). https://doi.org/10.1016/S0921-5093(98)01117-4
  14. Y. B. Park, J. Yu, "Effect of Electroplated Cu Thickness and Polyimide Plasma Treatment Conditions on the Interfacial Fracture Mechanics Parameter in the Cu/Cr/Polyimide system", Met. Mater. Int., 7(2), 123-131 (2001). https://doi.org/10.1007/BF03026950
  15. International Electrotechnical Commission (IEC), "Measurement of peel strength for printed conductive layer on flexible substrate by the 90° peel method", Geneva, Switzerland (2021).
  16. J. Y. Song, J. Yu, "Analysis of the T-peel strength in a Cu/Cr/Polyimide system", Acta Mater., 50(16), 3985-3994 (2002). https://doi.org/10.1016/S1359-6454(02)00197-0
  17. G. E. Dieter, "Mechanical Metallurgy", 295, McGraw-Hill, New York (1989).
  18. J. H. An, J. H. Park, and Y. J. Kim, "Test Rate Effect on Tensile Properties of Copper Thin Film", Kor. Soc. Mechanical. Eng., 10, 17-20 (2007).