• Title/Summary/Keyword: pearlite

Search Result 280, Processing Time 0.024 seconds

Effect of Pro-eutectoid Ferrite and Cementite-spheroidization on the Sliding Wear Resistance of Carbon Steels (탄소강의 초석페라이트와 시멘타이트 구상화가 미끄럼마멸 거동에 미치는 영향 분석)

  • Hur, H.L.;Gwon, H.;Kim, M.G.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.23 no.6
    • /
    • pp.345-350
    • /
    • 2014
  • The current study elucidates the effects of cementite spheroidization and pro-eutectoid ferrite on the sliding wear resistance in medium carbon (0.45wt%C) and high carbon (1wt%C) steels. Both steels were initially heat treated to obtain a fully pearlite or ferrite + pearlite microstructure. Spheroidizing heat treatments were performed on both steels to spheroidize the pearlitic cementite. Sliding wear tests were conducted using a pin-on-disk wear tester with the steel specimens as the disk and an alumina ($Al_2O_3$) ball as the pin. The sliding wear tests were carried out at room temperature in air with humidity of $40{\pm}2%$. Adapted sliding distance and applied load was 300m and 100N, respectively. Sliding speed was 0.1m/s and the wear-track radius was 9 mm. Worn surfaces and cross-sections of the wear track were examined using an SEM. Micro Vickers hardness of the wear-track subsurface was measured as a function of depth from the worn surface. Hardness and sliding-wear resistance of both steel decreased with increased spheroidization of the cementite. The decrease was more significant in the fully pearlitic steel (1wt%C steel). The steel with the pro-eutectoid ferrite showed relatively higher wear resistance compared to the spheroidized pearlitic steel.

The Effect of Sb/RE on the As-Cast Morphology of Graphite and Mechanical Properties of Heavy Section Ferritic Ductile Cast Iron (후육 페라이트 구상흑연주철의 주방상태 흑연형상 및 기계적 성질에 미치는 Sb/RE의 영향)

  • Shin, Ho-Chul;Yun, Ho-Sung;Shin, Je-Sik;Lee, Sang-Mok;Moon, Byung-Moon
    • Journal of Korea Foundry Society
    • /
    • v.25 no.5
    • /
    • pp.195-202
    • /
    • 2005
  • In this study, we investigated the effect of Sb/RE on the microstructure and mechanical properties of as-cast heavy sectioned, over 250mm thickness, ferritic ductile cast iron. Exothermic and thermal insulation material were equipped on the wall of sand cast mold having the dimensions of $250{\times}250{\times}250$ mm. The nominal composition of the molten metal was controlled to be on the eutectic composition and Sb was added about 0, 0.005 and 0.02% respectively. In the center of as-cast ingot without Sb addition, the solidification of chunky graphite was induced by the eutectic reaction that took long time, which caused the decrease of elongation and impact energy. In case that the value of Sb/RE is 0.8, the solidification of chunky graphite could be suppressed and the improvement of nodularity was observed. On the other hand, the excessive addition of Sb suppressed the solidification of chunky graphite but gave rise to the solidification of flake graphite and the increase of pearlite contents. This results in poor elongation and impact energy which is lower than those in the case of no Sb addition.

Nitrogen Permeation Treatment of Duplex and Austenitic Stainless Steels

  • Yoo, D.K.;Joo, D.W.;Kim, Insoo;Kang, C.Y.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.2
    • /
    • pp.57-64
    • /
    • 2002
  • The 22%Cr-5%Ni-3%Mo duplex and 18%Cr-8%Ni austenitic stainless steels have been nitrogen permeated under the $1Kg/cm^2$ nitrogen gas atmosphere at the temperature range of $1050^{\circ}C{\sim}1150^{\circ}C$. The nitrogen-permeated duplex and austenitic stainless steels showed the gradual decrease in hardness with increasing depth below surface. The duplex stainless steel showed nitrogen pearlite at the outmost surface and austenite single phase in the center after nitrogen permeation treatment, while the obvious microstructural change was not observed for the nitrogen-permeated austenitic stainless steel. After solution annealing the nitrogen-permeated stainless steels(NPSA treatment) at $1200^{\circ}C$ for 10 hours, the hardness of the duplex and austenitic stainless steels was constant through the 2 mm thickness of the specimen, and the ${\alpha}+{\gamma}$ phase of duplex stainless steel changed to austenite single phase. Tensile strengths and elongations of the NPSA-treated duplex stainless steel remarkably increased compared to those of solution annealed (SA) duplex stainless steel due to the solution strengthening effect of nitrogen and the phase change from a mixture of ferrite and austenite to austenite single phase, while the NP-treated austenitic stainless steel displayed the lowest value in elongation due to inhomogeneous deformation by the hardness difference between surface and interior.

Effects of Alloying Elements(Sb, Ti) on Damping Capacity and Mechanical Properties In 3.6%C Gray Cast Iron (3.6%C 회주철의 진동감쇠능 및 기계적 성질에 미치는 Sb 및 Ti 첨가의 영향)

  • Kim, J.C.;Han, D.W.;Baik, S.H.;Choi, C.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.6
    • /
    • pp.330-335
    • /
    • 2001
  • Flake graphite cast irons with the high damping capacity have been used for the control of vibration and noise occurring in the members of various mechanical structures under vibrating conditions. However, the damping capacity which Is morphological characteristics of graphite is one of the important factors in reducing the vibration and noise, but hardly any work has deal with this problem. Therefore, the authors have examined the damping capacity of various cast irons with alloying elements and studied the influences of the matrix structures, mechanical properties and morphological characteristics of graphite. The main results obtained are as follows: Effects of Sb on the damping capacities and mechanical properties have been investigated in 3.6%C-0.2%Ni gray cast iron. At 0.02%Sb, specific damping capacity showed the maximum value, and decreased with further increase in Sb content. Mechanical properties showed opposite trend with the damping capacity. And then, effects of Ti on the damping capacities and mechanical properties have been investigated in 3.6%C-0.2%Ni-0.02%Sb gray cast iron. Specific damping capacity increased with increase in Ti content. Graphite length also showed same behavior. Tensile strength increased with Ti content due to refinement of pearlite. In the case of 0.14%Ti addition in 3.6%C-0.2%Ni-0.02%Sb cast iron, specific damping capacity and tensile strength was 36% and 25 $kgf/mm^2$ which are higher than 32% and 15 $kgf/mm^2$ at 3.6%C-0.2%Ni cast iron respectively.

  • PDF

Metallurgical Analysis of Forged Iron Axe Excavated from the Wood-framed Tomb at the Hwangseongdong, Gyeongju, Korea (경주 황성동 목곽묘에서 출토된 단조 철부의 금속학적 특성 분석)

  • Lee, Chan-Hee;Lee, Myeong-Seong;Kim, Jeong-Hun;Yi, Ki-Wook
    • 한국문화재보존과학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.33-42
    • /
    • 2004
  • The forged iron axe found in the No. 2 wood-framed tomb (the middle 3rd century) of Hwangseongdong, Gyeongju is rectangular on the plane level. It shows an obtuse angle in the edge part, while the joint part has the both sides folded up and shows the traces of wood. Under the reflected light, the Iron axe shines in metal luster, which is bright light gray or light creamy colors. The result of x-ray diffraction analysis shows that the axe consists of magnetite and geothite, which can explain why the composition and structure of the original ore has been kept intact. The microtexture of the axe has the irregular network of ferrite and pearlite, and tile cementite of tiny amount in the ferrite background. The overall treatment of the texture seems to be thermal with a high ratio of carbon. There are fine-grained magnetite, wolframite, quartz, calcite, mica, hornblende and pyroxene inside the axe. Those must be the impurities that they failed to remove in the refining process. The normal ferrite is composed of pure iron whose $Fe_2O_3$ proportion is from 99.16 to $99.84\;wt.\%$. Other than them, the ferrite parts usually contain $Al_2O_3\;and\;SiO_2$. The irregular network of pearlite also contains Impurities including $Al_2O_3\;and\;SiO_2$ and shows highly diverse patterns of carbon content. It's because the axe was carburized after the material was made to resemble pure iron. The decarbonization work didn't go well along the process marks. It's estimated that the original ore was bloom produced in low-temperature reduction and formed around in $727^{\circ}C$, which is eutetic temperature.

  • PDF

Effects of Tensile Properties and Microstructure on Abrasive Wear for Ingot-Slicing Saw Wire (잉곳 슬라이싱용 Saw Wire의 연삭마모에 미치는 인장특성과 미세조직의 영향)

  • Hwang, Bin;Kim, Dong-Yong;Kim, Hoi-Bong;Lim, Seung-Ho;Im, Jae-Duk;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.334-340
    • /
    • 2011
  • Saw wires have been widely used in industries to slice silicon (Si) ingots into thin wafers for semiconductor fabrication. This study investigated the microstructural and mechanical properties, such as abrasive wear and tensile properties, of a saw wire sample of 0.84 wt.% carbon steel with a 120 ${\mu}M$ diameter. The samples were subjected to heat treatment at different linear velocities of the wire during the patenting process and two different wear tests were performed, 2-body abrasive wear (grinding) and 3-body abrasive wear (rolling wear) tests. With an increasing linear velocity of the wire, the tensile strength and microhardness of the samples increased, whereas the interlamellar spacing in a pearlite structure decreased. The wear properties from the grinding and rolling wear tests exhibited an opposite tendency. The weight loss resulting from grinding was mainly affected by the tensile strength and microhardness, while the diameter loss obtained from rolling wear was affected by elongation or ductility of the samples. This result demonstrates that the wear mechanism in the 3-body wear test is much different from that for the 2-body abrasive wear test. The ultra-high tensile strength of the saw wire produced by the drawing process was attributed to the pearlite microstructure with very small interlamellar spacing as well as the high density of dislocation.

A Study on the Thermal Conductivity of Inorganic Insulation Properties According to the Binder Types (바인더 종류에 따른 무기단열재의 열전도 특성에 관한 연구)

  • Jeon, Chanki;Lee, Jaeseong;Chung, Hoon;Park, Jongpil;Shim, Jaeyeong
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.3
    • /
    • pp.286-291
    • /
    • 2016
  • In this study, we conducted about the manufacture of a non-combustible inorganic insulation by replacing the binder type for satisfaction of thermal conductivity for developing a lightweight inorganic insulation. Thermal conductivity was measured using a machine of HFM-436. We made samples are inorganic insulation by using SH-1(liquid) of S company and SH-2(solids). By Mixing Pearlite and SH-4(Liquid) was produced as insulation sample 2. Each was shaped into a binder and pearlite in the frame. After complete drying, thermal conductivity was measured by using HFM-435. The thermal conductivity was determined using two different binder. We analyzed the effect on thermal conductivity in binder.

Effects of Alloying Elements and Heat Treatments on the Microstructures and Mechanical Properties of Ductile Cast Iron by Strip Casting (스트립캐스팅한 구상흑연주철박판의 합금원소 및 열처리에 따른 미세조직과 기계적 성질의 변화)

  • Lee, Gi-Rak;Ra, Hyung-Yong
    • Journal of Korea Foundry Society
    • /
    • v.20 no.2
    • /
    • pp.122-128
    • /
    • 2000
  • Strip casting process is a new technology that makes a near net shape thin strip directly from molten metal. With this process, a large amount of energy and casting cost could be decreased from the abbreviation of reheating and/or hot rolling process. Ductile cast iron which has spheroidal graphite in the matrix is the most commercial and industrial material, because of its supreme strength, toughness, and wear resistance etc. But it cannot be produced to the thin strip owing to difficulty in rolling of ductile cast iron. In this study, ductile cast iron strips are produced by the twin roll strip caster, with different chemical compositions of C, Si, and Mn contents. And then heat-treated, microstructures and mechanical properties are examined. The microstructures of as-cast strip are that of white cast iron which consists of the mixture of cementite and pearlite, but the equiaxed crystal zone of the pearlite or segregation zone of cementite exists in the center region of the strip thickness, which cannot be observed in the rapidly solidified metallic mold cast specimens. This structure is supposed to be formed from the thermal distribution of strip and the rolling force. Comparing with the structures of each strips after heat treatment, increasing Si content makes smaller spheroidal graphite and more compact in the matrix, furthermore the less of Mn content makes the ferrite matrix be obtained clearer and easier. As a result of the tensile test of graphitization heat-treated strips, the yield strengths are about 250 MPa, the tensile strengths are about $430{\sim}500$ MPa, and the elongations are about $10{\sim}13%$. In the case of the strip which has the smaller and more compact spheroidal graphite in the ferrite matrix, the higher tensile strength and better drawability could be obtained.

  • PDF

Iron Technologies of the Three Kingdoms Period in Korea (삼국시대(三國時代) 철기유물(鐵器遺物)의 제작기술(製作技術) 연구(硏究))

  • Chung, Kwang-Yong
    • Korean Journal of Heritage: History & Science
    • /
    • v.35
    • /
    • pp.138-158
    • /
    • 2002
  • To compare and analyze technical system related to manufacturing of ironware during the period of the Three Kingdoms, an analysis was conducted on the minute system of metalwork, as study objects, of the remains of the Mt. Wolpyeong fortress wall in Daejeon in the period of capital during the era of the Three Kingdoms in the 5th century, the Sanwol-ri remains in the 6th century in Gunsan and the remains of ironware excavated from the great ancient tomb of Hwangnam of the Silla dynasty in the 5th century. The result of analysis shows that in the most of the casting products, the minute system of white cast iron were contained. While the iron part of decarbonization was in the system by casting as white cast iron in the central part, on the surface layer it was turned out that comparatively uniform 100% pearlite system of about 1~2mm degree was existing. The part of pearlite on the surface layer was caused by decarbonization, which appears in all the parts of blade front end and handle. Therefore, it was found that the iron part of decarbonization was manufactured by casting, and then was processed at the high temperature by decarbonization. For the products of forging, after processing the products on the basis of pure iron for materials, they manufactured the ironware that raises the strength by carbonizing that keeps carbon infiltrated on the necessary part, by the method of black smith welding that add pure iron to steel, or by varying the method of heat processing onto the part required of strength. Though limited, we could understand that the technical systems for manufacturing skill of ironware in the areas of Baekje and Silla were different each other. In the technical system for Hwangnam great ancient tomb in the Silla area, it is found that they had raised the strength on the necessary part by applying the steelmaking method of carbonizing in the last stage of production of products, in the meantime in Baekje area, it appears that they had produced steel in advance in the first stage of production of the products, and used the produced steel only to the necessary part.

The CH3CHO Removal Characteristics of Lightweight Aggregate Concrete with TiO2 Spreaded by Low Temperature Firing using Sol-gel Method (Sol-gel법으로 이산화티탄(TiO2)을 저온소성 도포시킨 경량골재콘크리트의 아세트알데히드(CH3CHO) 제거 특성)

  • Lee, Seung Han;Yeo, In Dong;Jung, Yong Wook;Jang, Suk Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2A
    • /
    • pp.129-136
    • /
    • 2011
  • Recently studies on functional concrete with a photocatalytic material such as $TiO_2$ have actively been carried out in order to remove air pollutants. The absorbtion of $TiO_2$ from those studies is applied by it being directly mixed into concrete or by suspension coated on the surface. When it comes to the effectiveness, the former process is less than that of the latter compared with the $TiO_2$ use. As a result, the direct coating of $TiO_2$ on materials' surface is more used for effectiveness. The Surface spread of it needs to have a more than $400^{\circ}C$ heat treat done to stimulate the activation and adhesion of photocatalysis. Heat treat consequently leads hydration products in concrete to be dehydrated and shrunk and is the cause of cracking. The study produces $TiO_2$ used Sol-gel method which enables it to be coated with a low temperature treat, applies it to pearlite using Lightweight Aggregate Concrete fixed with a low temperature treat and evaluates the spread performance of it. In addition to this, the size of pearlite is divided into two types: One is 2.5 mm to 5.0 mm and the other is more than 5.0 mm for the benefit of finding out the removal characteristics of $CH_3CHO$ whether they are affected by pearlite size, mixing method and ratio with $TiO_2$ and elapsed time. The result of this experiment shows that although $TiO_2$ produced by Sol-gel method is treated with 120 temperature, it maintains a high spread rate on the XRF(X ray Florescence) quantitative analysis which ranks $TiO_2$ 38 percent, $SiO_2$ 29 percent and CaO 18 percent. In the size of perlite from 2.5 mm to 5.0 mm, the removal characteristic of $CH_3CHO$ from a low temperature heated Lightweight concrete appears 20 percent higher when $TiO_2$ with Sol-gel method is spreaded on the 7 percent of surface. In other words, the removal rate is 94 percent compared with the 72 percent where $TiO_2$ is mixed in 10 percent surface. In more than 5.0 mm sized perlite, the removal rate of $CH_3CHO$, when $TiO_2$ is mixed with 10 percent, is 69 percent, which is similar with that of the previous case. It suggests that the size of pearlite has little effects on the removal rate of $CH_3CHO$. In terms of Elapsed time, the removal characteristic seems apparent at the early stage, where the average removal rate for the first 10 hours takes up 84 percent compared with that of 20 hours.