• Title/Summary/Keyword: peak water level

Search Result 214, Processing Time 0.036 seconds

Calculation of Unit Hydrograph from Discharge Curve, Determination of Sluice Dimension and Tidal Computation for Determination of the Closure curve (단위유량도와 비수갑문 단면 및 방조제 축조곡선 결정을 위한 조속계산)

  • 최귀열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.7 no.1
    • /
    • pp.861-876
    • /
    • 1965
  • During my stay in the Netherlands, I have studied the following, primarily in relation to the Mokpo Yong-san project which had been studied by the NEDECO for a feasibility report. 1. Unit hydrograph at Naju There are many ways to make unit hydrograph, but I want explain here to make unit hydrograph from the- actual run of curve at Naju. A discharge curve made from one rain storm depends on rainfall intensity per houre After finriing hydrograph every two hours, we will get two-hour unit hydrograph to devide each ordinate of the two-hour hydrograph by the rainfall intensity. I have used one storm from June 24 to June 26, 1963, recording a rainfall intensity of average 9. 4 mm per hour for 12 hours. If several rain gage stations had already been established in the catchment area. above Naju prior to this storm, I could have gathered accurate data on rainfall intensity throughout the catchment area. As it was, I used I the automatic rain gage record of the Mokpo I moteorological station to determine the rainfall lntensity. In order. to develop the unit ~Ydrograph at Naju, I subtracted the basic flow from the total runoff flow. I also tried to keed the difference between the calculated discharge amount and the measured discharge less than 1O~ The discharge period. of an unit graph depends on the length of the catchment area. 2. Determination of sluice dimension Acoording to principles of design presently used in our country, a one-day storm with a frequency of 20 years must be discharged in 8 hours. These design criteria are not adequate, and several dams have washed out in the past years. The design of the spillway and sluice dimensions must be based on the maximun peak discharge flowing into the reservoir to avoid crop and structure damages. The total flow into the reservoir is the summation of flow described by the Mokpo hydrograph, the basic flow from all the catchment areas and the rainfall on the reservoir area. To calculate the amount of water discharged through the sluiceCper half hour), the average head during that interval must be known. This can be calculated from the known water level outside the sluiceCdetermined by the tide) and from an estimated water level inside the reservoir at the end of each time interval. The total amount of water discharged through the sluice can be calculated from this average head, the time interval and the cross-sectional area of' the sluice. From the inflow into the .reservoir and the outflow through the sluice gates I calculated the change in the volume of water stored in the reservoir at half-hour intervals. From the stored volume of water and the known storage capacity of the reservoir, I was able to calculate the water level in the reservoir. The Calculated water level in the reservoir must be the same as the estimated water level. Mean stand tide will be adequate to use for determining the sluice dimension because spring tide is worse case and neap tide is best condition for the I result of the calculatio 3. Tidal computation for determination of the closure curve. During the construction of a dam, whether by building up of a succession of horizontael layers or by building in from both sides, the velocity of the water flowinii through the closing gapwill increase, because of the gradual decrease in the cross sectional area of the gap. 1 calculated the . velocities in the closing gap during flood and ebb for the first mentioned method of construction until the cross-sectional area has been reduced to about 25% of the original area, the change in tidal movement within the reservoir being negligible. Up to that point, the increase of the velocity is more or less hyperbolic. During the closing of the last 25 % of the gap, less water can flow out of the reservoir. This causes a rise of the mean water level of the reservoir. The difference in hydraulic head is then no longer negligible and must be taken into account. When, during the course of construction. the submerged weir become a free weir the critical flow occurs. The critical flow is that point, during either ebb or flood, at which the velocity reaches a maximum. When the dam is raised further. the velocity decreases because of the decrease\ulcorner in the height of the water above the weir. The calculation of the currents and velocities for a stage in the closure of the final gap is done in the following manner; Using an average tide with a neglible daily quantity, I estimated the water level on the pustream side of. the dam (inner water level). I determined the current through the gap for each hour by multiplying the storage area by the increment of the rise in water level. The velocity at a given moment can be determined from the calcalated current in m3/sec, and the cross-sectional area at that moment. At the same time from the difference between inner water level and tidal level (outer water level) the velocity can be calculated with the formula $h= \frac{V^2}{2g}$ and must be equal to the velocity detertnined from the current. If there is a difference in velocity, a new estimate of the inner water level must be made and entire procedure should be repeated. When the higher water level is equal to or more than 2/3 times the difference between the lower water level and the crest of the dam, we speak of a "free weir." The flow over the weir is then dependent upon the higher water level and not on the difference between high and low water levels. When the weir is "submerged", that is, the higher water level is less than 2/3 times the difference between the lower water and the crest of the dam, the difference between the high and low levels being decisive. The free weir normally occurs first during ebb, and is due to. the fact that mean level in the estuary is higher than the mean level of . the tide in building dams with barges the maximum velocity in the closing gap may not be more than 3m/sec. As the maximum velocities are higher than this limit we must use other construction methods in closing the gap. This can be done by dump-cars from each side or by using a cable way.e or by using a cable way.

  • PDF

Multipurpose Dam Operation Models for Flood Control Using Fuzzy Control Technique ( II ) - Simulation of Historical Flood Events - (퍼지제어모형을 이용한 다목적 댐의 홍수조절모형 (II) - 과거홍수사상에 대한 적용 -)

  • Shim, Jae-Hyun;Kim, Ji-Tae;Cho, Won-Cheol;Kim, Jin-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.1 s.12
    • /
    • pp.41-50
    • /
    • 2004
  • The objective of this study is to investigate the feasibility of the developed Fuzzy control techniques in dam operation. The simulated results for the 1984, 1990, and 1995 flood events are compared with historical operation results in the view of flood control and disaster prevention. The three models developed in this study determine the outflows based on the two conditions the first one is to consider only two inputs such as reservoir water level and inflow, for operation of the existing situations, the second one is that the possible maximum discharge from each dam does not exceed the allowable design maximum discharge for disaster prevention in downstream area. As the results, it was shown that the suggested models based on Fuzzy control technique could reduce both the peak water level and the maximum peak discharge compared with the historical operation results.

LIDMOD3 Development for Design and Evaluation of Low Impact Development (저영향개발기법 설계 및 평가를 위한 LIDMOD3 개발)

  • Jeon, Ji-Hong;Seo, Seong-Cheol
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.4
    • /
    • pp.382-390
    • /
    • 2018
  • In this study, the LIDMOD3 was developed to design and evaluate low impact development (LIDMOD). In the same fashion, the LIDMOD3 employs a curve number (NRCS-CN) method to estimate the surface runoff, infiltration and event mean concentration as applicable to pollutant loads which are based on a daily time step. In these terms, the LIDMOD3 can consider a hydrologic soil group for each land use type LID-BMP, and the applied removal efficiency of the surface runoff and pollutant loads by virtue of the stored capacity, which was calculated by analyzing the recorded water balance. As a result of Model development, the LIDMOD3 is based on an Excel spread sheet and consists of 8 sheets of information data, including: General information, Annual precipitation, Land use, Drainage area, LID-BMPs, Cals-cap, Parameters, and the Results. In addition, the LIDMOD3 can estimate the annual hydrology and annual pollutant loads including surface runoff and infiltration, the LID efficiency of the estimated surface runoff for a design rainfall event, and an analysis of the peak flow and time to peak using a unit hydrolograph for pre-development, post-development without LID, and as calculated with LID. As a result of the model application as applied to an apartment, the LIDMOD3 can estimate LID-BMPs considering a well spatical distributed hydroloic soil group as realized on land use and with the LID-BMPs. Essentially, the LIDMOD3 is a screen level and simple model which is easy to use because it is an Excel based model, as are most parameters in the database. This system can be expected to be widely used at the LID site to collect data within various programmable model parameters for the processing of a detail LID model simulation.

A study on the variation of the Korean marine ecosystem through biodiversity attributes (생물다양성 특성 분석을 통한 우리나라 주변 해양생태계 변화 연구)

  • Jong Hee LEE;Young Il SEO;Sang Chul YOON;Heejoong KANG;Ji-Hoon CHOI;Min-Je CHOI;Jinwoo GIM
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.4
    • /
    • pp.315-327
    • /
    • 2023
  • In the last five decades, there has been a consistent decline in the total catch of fisheries in the Korean jurisdiction since the peak in 1986. The decline in catch slowed and slightly rebounded in the 2000s, but changed back to a decline in the 2010s. As indicators that can identify changes in the marine ecosystem, trophic level (TL), biodiversity index (H'), and the ratio between pelagic fish and demersal fish (P/D) were analyzed by each local marine ecosystem. There were some different changes in each local marine ecosystem, but the mean TL and H' decreased and P/D increased in general in Korean waters. Demersal fish, which were dominant in the 1970s and 1980s, declined, and small pelagic fish and cephalopods have dominantly changed since the 1990s. However, these changes are not simple, and they are fluctuating in complex ways relating to each marine ecosystem and the timing. It is believed that changes in marine ecosystems in Korean waters are likely caused by a combination of fisheries and climate change. The ecosystem indicators reflected a change in the total catch, a sharp drop in catch of demersal fish, and increasing catch of pelagic fish since the mid-1980s.

Distributions of Hydrogeological Variables and Flow Field on GIS Digital Map (GIS 수치지도를 이용한 수리지질학적 변수와 지하수 유동의 분포)

  • Lee, Cheo K.
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.2 no.2
    • /
    • pp.45-58
    • /
    • 1999
  • Digital map is utilized for an effective display of the distributions of the hydrogeological variables such as water table height(hydraulic head) and log-transmissivity(lnT) in north Pohang, KyungBug. Specifically the geostatistical method kriging is used to construct the distributions in an unconfined aquifer from a finite set of measured data. The experimental variograms for both the head and lnT suggest spherical models with nugget of 0 and range of 6km. The kriged results by using these variograms show that the head decreases primarily from the west to the east with a large peak in the north-western part and lnT is at the maximum level in the central part with outwardly decreasing trend. The constructed delineation is also used to calculate the flow field in the region. Finite differences with second order consistency are used to calculate the fluxes in the east(x) and north(y) across a vertical cross-section of unit width and height equal to the thickness of the wet zone in the aquifer. It is demonstrated that the flow is dominantly in the east with diverging trend on the eastern hillside of the water table peak. A few convergent spots also appear.

  • PDF

An Optimal Operation of Multi-Reservoirs for Flood Control by Incremental DP (Incremental DP에 의한 홍수시 댐군의 연계운영)

  • Lee, Jae-Hyeong;Lee, Gil-Seong;Jeong, Dong-Guk
    • Water for future
    • /
    • v.25 no.2
    • /
    • pp.47-60
    • /
    • 1992
  • An optimal operation model for flood control of multi-reservoirs, Hwacheon and Soyanggang, located in the north Han River basin is developed by using the Incremental DP. The objective function is to minimize the peak flow at the confluence point, of Euam dam, and the hydraulic and hydrologic constraints are established by considering the related laws as to the operation of dam in flood season, each reservoir and channel characteristics. In particular, the final elevations of each reservoir are induced to the conservation pool level in order to prepare for the secondary flood. In addition, the results of this model, simulation results and the single reservoir operation by DP are compared in terms of control and utility efficiencies, and also the peak flows at the confluence point for floods with various return periods are compared with the results of simulation suing feedback control. as the results, the control and utility effciencies are more or less low in contrast with the results of simulation and the single reservoir operation by DP, and the peak flows at confluence point are high because of terminal condition of reservoir storage.

  • PDF

Application of a Two-dimensional Flood Inundation Model based on Quadtree Grid (사면구조 격자 기법에 의한 2차원 홍수범람모형의 적용)

  • Kim, Jong-Ho;Lee, Seung-Oh;Yoon, Kwang-Seok;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.129-136
    • /
    • 2008
  • All measures to cope with flooding rely on flood predictions to some extent. To investigate these predictions such as maximum water level or inundation area, a numerical model has been developed. The governing equations of the model are the two-dimensional Saint-Venant equations. The governing equations are discretized explicitly by using the leap-frog scheme and upwind scheme based on quadtree grids. The predicted numerical results have been verified by comparing to those of a Thacker problem. As a result of verifications, the present model is not only nearly four times as efficient as uniform grids but also in close agreement with the previous models. Next, the developed model is applied to several flood events in the Uiryeong basin. A general tendency is found that as a frequency is increasing, overall water levels including peak water level are increasing. At only a 500 year frequency, maximum water level is higher than 18.5 m. Therefore, it can be predictable that inundation will be generated in a 500 year frequency.

Application of kriging approach for estimation of water table elevation (Kriging 기법을 이용한 지하수위 분포 추정)

  • Park, Jun-Kyung;Park, Young-Jin;Wye, Yong-Gon;Lee, Sang-Ho;Hong, Chang-Soo;Choo, Suk-Yeon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.3
    • /
    • pp.217-227
    • /
    • 2002
  • Geostatistical methods were used for the groundwater flow analysis on the ${\bigcirc}{\bigcirc}$ tunnel area. Linear regression analysis shows that the topographic elevation and ground water level of this area have very high correlation. Groundwater-level contour maps produced by ordinary kriging and cokriging have little differences in mountain areas. But, comparing two maps on the basis of an elevation contour map, a groundwater-level contour map using cokring is more accurate. Analyzing the groundwater flow on two groundwater-level contour maps, the groundwater of study area flows from the north-west mountain areas to near valleys, and from the peak of the mountain to outside areas. In the design steps, the groundwater-level distribution is reasonably considered in the tunnel construction area by cokriging approach. And, geostatistics will provide quantitative information in the unknown groundwatrer-level area.

  • PDF

Effects of Thermal Properties and Water Retention Characteristics of Permeable Concrete Pavement on Surface Temperature (투.보수성 시멘트 콘크리트 포장의 열물성 및 수분보유특성이 표면온도에 미치는 영향)

  • Ryu Nam-Hyang;Yoo Byung-Rim
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.1 s.114
    • /
    • pp.21-36
    • /
    • 2006
  • This study was undertaken to analyze the effects of pavement thermal properties and water retention characteristics on the surface temperature of the gray permeable cement concrete pavement during the summer. Following is a summary of major results. 1) The hourly surface temperature of pavement could be well predicted with a heat transfer model program that incorporated the input data of major meteorological variables including solar radiation, atmospheric temperature, dew point, wind velocity, cloudiness and the evaporation rate of the pavements predicted by the time domain reflectometry (TDR) method. 2) When the albedo was changed to 0.5 from an arbitrary starting condition of 0.3, holding other variables constant, the peak surface temperature of the pavement dropped by 11.5%. When heat capacity was changed to $2.5\;kJm^{-3}K^{-1}\;from\;1.5\;kJm^{-3}K^{-1}$, surface temperature dropped by 8.0%. When daily evaporation was changed to 1 mm from 2 mm, temperature dropped by 5.7%. When heat conductivity was changed to $2.5\;Wm^{-1}K^{-1}\;from\;1.5\;Wm^{-1}K^{-1}$, the peak surface temperature of the pavement fell by 1.2%. The peak pavement surface temperature under the arbitrary basic condition was $24.46^{\circ}C$ (12 a.m.). 3) It accordingly became evident that the pavement surface temperature can be most effectively lowered by using materials with a high albedo, a high heat capacity or a high evaporation at the pavement surface. The glare situation, however, is intensified by raising of the albedo, moreover if reflected light is absorbed into surrounding physical masses, it is changed into heat. It accordingly became evident that raising the heat capacity and the evaporative capacity may be the moot acceptable measures to improve the thermal characteristics of the pavement. 4) The sensitivity of the surface temperature to major meteorological variables was as follows. When the daily average temperature changed to $0^{\circ}C\;from\;15^{\circ}C$, holding all other variables constant, the peak surface temperature of the pavement decreased by 56.1 %. When the global solar radiation changed to $200\;Wm^{-2}\;from\;600\;Wm^{-2}$, the temperature of the pavement decreased by 23.4%. When the wind velocity changed to $8\;ms^{-1}\;from\;4\;ms^{-1}$, the temperature decreased by 1.4%. When the cloudiness level changed to 1.0 from 0.5, the peak surface temperature decreased by 0.7%. The peak pavement surface temperature under the arbitrary basic conditions was $24.46^{\circ}C$ (12 a.m.)

A Study on the Characteristics of Summer Water Temperature Fluctuations by Spectral Analysis in Coast of Korea in 2016 (스펙트럼 분석을 통한 2016년 하계 한국연안의 수온변동 특성에 관한 연구)

  • Seo, Ho-San;Jeong, Yong-Hyun;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.2
    • /
    • pp.186-194
    • /
    • 2020
  • In this study, spectral analysis was conducted to identify environmental factors af ecting short-term changes in water temperature in the East, West and South coasts of Korea. The data used in the spectrum analysis is the 2016 summer water temperature, air temperature, tide level and wind data provided by Korea Hydrographic & Oceanographic Agency. In power spectrum results, peaks of water temperature and tide level were observed at same periods in West Sea (Incheon, Pyeungteak, Gunsan and Mokpo) and South Sea (Wando, Goheung, Yeosu, Tongyeong and Masan) where mean tidal range was more than 100 cm. On the other hand, periodicity of water temperature did not appear in East Sea and Busan where the mean tidal range was small. Coherence analysis showed that water temperature was highly correlated with tide in West Sea and three stations(Wando, Goheung and Tongyeong) of South Sea. Especially, correlation between water temperature and tide level in Wando and Tongyeong presented 0.96 at semi-diurnal period. Water temperature in Yeosu seems to have influenced by tide and inflow of fresh water. In Masan, water temperature is influenced by south wind, tide and inflow of fresh water. In East Sea, influence of tide on water temperature is small due to current and small tidal range. As a result of comparing the time series graph, stations where the correlation between water temperature and tide is high show that relatively cold water was inputted at flood tide and flow out at ebb tide. short-term variation of water temperature was affected by tide, but long-term variation over a month was affected by air temperature.