• Title/Summary/Keyword: peak strength

Search Result 1,168, Processing Time 0.024 seconds

Earthquake Simulation Tests of a 1 :5 Scale 3-Story Masonry-Infilled Reinforced Concrete Frame

  • Lee, Han-Seon;Woo, Sung-Woo;Heo, Yun-Sup
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.153-164
    • /
    • 1999
  • The objective of this research is to observe the actual response of a low-rise nonseismic moment-resisting masonry-infilled reinforced concrete frame subjected to varied levels of earthquake ground motions. The reduction scale for the model was determined as 1 : 5 considering the capacity of the shaking table to be used. This model was, then, subjected to the shaking table motions simulating Taft N2IE component earthquake ground motion, whose peak ground acceleration(PGA) was modified to 0.12g, 0.2g, 0.3g, and 0.4g. The g1oba1 behavior and failure mode were observed. The lateral accelerations and displacements at each story and local deformations at the critical portions of the structure were measured. Before and after each earthquake simulation test, free vibration tests and white noise tests were performed to find the changes in the natural period of the model. When the results of the masonry-infilled frame are compared with those of the bare frame, it can be recognized that masonry infills contribute to the large increase in the stiffness and strength of the g1oba1 structure whereas it also accompanies the increase of earthquake inertia forces. However, it is judged that masonry infills may be beneficial to the performance of the structure since the rate of increase in strength appears to be greater than that of the induced earthquake inertia forces.

  • PDF

Effects of Steel Fiber Reinforcement and the Number of Hooked Bars at R/C Exterior Joints

  • Choi, Ki-Bong
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.181-189
    • /
    • 1999
  • An experimental study was performed on the Pull-out behavior of 90-deg standard hooks from the exterior beam-column connections. the effects of the number of hooked bars and fiber reinforcement of the joint area were investigated with the following conclusions : (1) Under the pull-out action of hooked bars. the damage and cracking of joint area the number of hooks pulling out from a joint increases; (2) Substitution of the transverse column (confining) reinforcement with steel fibers at the joint region effectively reduces the extent of cracking in exterior joints caused by the pull-out of hooked bars; (3) The pull-out strength and post-peak ductility of hooked bars are adversely influenced by the increase in number of hooks pulling out from an exterior joint. Current hooked bar anchorage design guidelines may be improved by considering the effect of the number of hooked bars on anchorage conditions at the exterior joints; and (4) The strength and ductility of hooked bars under pull-out forces are positively influenced by substituting the conventional confining reinforcement of exterior joints with steel fibers . The application of steel fibers to the exterior joints is an effective technique for improving the anchorage conditions of hooked bars, and also for reducing the congestion of reinforcement in the beam-column connections.

  • PDF

Behavior of Reinforced Dapped End Beams with T-headed Bar and Steel Fibers (헤디드 바와 강섬유로 보강된 Dapped End Beam의 구조 거동에 관한 실험적 연구)

  • Choi Jin Hyouk;Lee Chang Hoon;Lee Joo Ha;Yoon Young Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.49-52
    • /
    • 2004
  • In this studies, Dapped End Beams(DEB) having disturbed regions were designed by using strut tie model, and the main purpose of this paper is that whether T-headed bars and Steel fibers will be present or not. The ability of DEB with T-headed bars have a superior performance rather than others, such as improved ductility, larger energy adsorption and enhanced post-peak load carrying capability. The capacity of DEB with steel fibers also show increase of ductility, shear strength, fatigue strength and crack. Each DEB with both headed bars and steel fibers, headed bars, and steel fibers as a substitute reinforced steel in the disturbed regions and a DEB with only stirrup and tie reinforced steel were comparable. In contrast, the headed bar stirrups, the tie headed bars and the reinforced steel fibers did not lose their anchorage and hence were able to develop strain hardening and also served to delay buckling of the flexural compression steel. Excellent load-deflection predictions were obtained by increasing the tension stiffening effect to account for high load effects.

  • PDF

Association of the Strength of Inyoung Pulse and Carotid Artery Using Ultrasonography and Pulse Diagnosis Device (초음파와 맥진기로 살펴본 인영맥의 세기와 경동맥의 상관 요인 연구)

  • Song, Min Sun;Lee, Shang Young;Choi, Chan-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.5
    • /
    • pp.610-614
    • /
    • 2012
  • This study was done to identify correlates of carotid artery ultrasonography's measurement and Inyoung pulse in college students. We measured the amplitude of Inyoung pulse, Chongu pulse, ratio of Inyoung to Chongu and ratio of Chongu to Inyoung on 30 college students. Also, We measured the Distance, Diameter), RI(resistivity index), S/D(systolic, diastolic ratio), PI(pulsatility index), PSV(peak systolic velocity), EDV(End diastolic velocity), Vmean using carotid artery ultrasonography. The data was analyzed by Pearson's correlation coefficient using SAS program. The results were as follow. Results showed a positive correlation between Inyoung pulse and diameter by carotid artery. It showed a positive correlation between Inyoung pulse and S/D. Also, It showed a positive correlation between Inyoung pulse and PSV. As a result, the strength of Inyoung pulse related with the diameter of carotid artery and blood flow velocity.

Evaluation of interfacial shear stress in active steel tube-confined concrete columns

  • Nematzadeh, Mahdi;Ghadami, Jaber
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.469-481
    • /
    • 2017
  • This paper aims to analytically investigate the effect of shear stress at the concrete-steel interface on the mechanical behavior of the circular steel tube-confined concrete (STCC) stub columns with active and passive confinement subjected to axial compression. Nonlinear 3D finite element models divided into the four groups, i.e. circumferential-grooved, talc-coated, lubricated, and normal groups, with active and passive confinement were developed. An innovative method was used to simulate the actively-confined specimens, and then, the results of the finite element models were compared with those of the experiments previously conducted by the authors. It was revealed that both the predicted peak compressive strength and stress-strain curves have good agreement with the corresponding values measured for the confined columns. Then, the mechanical properties of the active and passive specimens such as the concrete-steel interaction, longitudinal and hoop stresses of the steel tube, confining pressure applied to the concrete core, and compressive stress-strain curves were analyzed. Furthermore, a parametric study was performed to explore the effects of the concrete compressive strength, steel tube diameter-to-wall thickness ratio, and prestressing level on the compressive behavior of the STCC columns. The results indicate that reducing or removing the interfacial shear stress in the active and passive specimens leads to an increase in the hoop stress and confining pressure, while the longitudinal stress along the steel tube height experiences a decrease. Moreover, prestressing via the presented method is capable of improving the compressive behavior of STCC columns.

A Study on the Ball-off of Via Balls Bonded by Solder Paste (Solder Paste로 접합된 비아볼의 Ball-off에 관한 연구)

  • Kim, Kyoung-Su;Kim, Jin-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.575-579
    • /
    • 2004
  • Package reliability test was conducted to investigate the effect of solder paste composition at BGA Package. It was found that the shape and size of the phase form are affected by the processing parameters. The material have used to fill in the via was Sn/36Pb/2Ag and Sn/0.75Cu type solder paste. Sn/36Pb/2Ag and Sn/0.75Cu paste were fabricated on Tape-BGA substrates by screen printing process, and via ball mount data were characterized with variations of dwell time of 85 seconds at reflow peak temperature at 22$0^{\circ}C$ or 24$0^{\circ}C$. The test condition was MRT 30 $^{\circ}C$/60 %RH/96 HR. Failures formed of a ball-off in solder paste process were observed by using a Optical Microscope and SEM(Scanning Electron Microscope). It was concluded that intermetallic layer growth played important roles in increasing solder fatigue strength for addition of Ag composition. The degradation of shear strength of solder composition is discussed.

A Basic Correlational Study of the Relationship between Maximum Muscle Power and EMG (최대 근력과 관련하여 EMG 상관관계에 관한 기초 연구)

  • Lee, Sung-bok;Kim, Dong-jun;Kim, Kyung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1815-1820
    • /
    • 2017
  • In this paper, a study was conducted to estimate the maximum muscle strength which is a standard for selecting exercise intensity in weight training. We designed a device that estimates the muscle fatigue from the EMG signal, expecting to show a correlation between peak muscle strength and fatigue. Curl - Dumbbell was performed using a 4 kg dumbbell and the frequency change of the EMG was observed. At this time, the designed device acquires the signal using the MCU and finally Matlab was used to confirm the change in the center frequency value. The results of 10 subjects were analyzed using SPSS regression analysis. The statistical results showed a correlation of $R^2$ 0.583 and Significant probability of 0.010, and the relation of Y = 8.144-2.097 (slope (MDF)) was obtained. In conclusion, if the wearable device is manufactured in the form of a wearable device and the user can recommend the exercise intensity, the system will be able to retry the more efficient exercise.

Effect of Deformation Temperature, Strain Rate and Grain Size on the Tensile Properties of 304L Stainless Steel (304L stainless Steel의 인장성질에 대한 변형온도, 변형속도 및 결정입도의 영향)

  • Kang, C.Y.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.3 no.2
    • /
    • pp.20-31
    • /
    • 1990
  • This investigation has been carried out to make clear the effect of deformation temperature, strain rate and grain size on the tensile properties of 304L stainless steel. Tensile properties of the metastable austenitic 304L steel remarkably influenced by deformation temperature. Tensile strength increased with decreasing deformation temperature and the elongation showed maximum value near $40^{\circ}C$. In order to obtain the high elongation, a large amount of deformation is available in austenite before martensitic transformation and the martensite has to be induced gradually. Tensile strength and elongation increased with decreasing grain size. The temperature representing the maximum elongation shifted to low temperature and the peak width of elongation became broaden with decreasing austenite grain size. The volume fraction of strain induced martensite decreased with decreasing austenite grain size. As the strain rate increase, the temperature representing the maximum elongation value shifted to high temperature and volume fraction of strain induced martensite decreased.

  • PDF

Effect of Aging Treatment on the Mechanical Properties of a 18 Ni Maraging Steel (18 Ni 마르에이징 강의 기계적 성질에 미치는 시효처리의 영향)

  • Kim, Hak-Mo;Kim, In-Bae;Park, Se-Yoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.1
    • /
    • pp.30-36
    • /
    • 1991
  • Effects of aging treatment on the mechanical properties of a 18 Ni maraging steel were investigated by considering the reverted austenite. Specimens were heat treated by austenitizing at $840^{\circ}C$ for 1 hr and then aged for various times at $480^{\circ}C$ and $520^{\circ}C$. The main results obtained are as follows : 1) The amounts of reverted austenite are increased up to about 4% at $480^{\circ}C$ and about 22% at $520^{\circ}C$ with 1 to 48 hrs aging time. 2) Decreasing tendencies of impact energy and fracture toughness with increasing aging time are diminished after aging for 2 hrs at two aging temperatures of $480^{\circ}C$ and $520^{\circ}C$. 3) Peak hardness and yield strength are obtained after aging for 4 hrs at $480^{\circ}C$ and 2 hrs at $520^{\circ}C$ respectively. From the above results, it was concluded that the optimum aging condition with which showed good strength and toughness combination are given to be $480^{\circ}C$ for 4 hrs and $520^{\circ}C$ for 2 hrs.

  • PDF

Development of umbrella anchor approach in terms of the requirements of field application

  • Evirgen, Burak;Tuncan, Ahmet;Tuncan, Mustafa
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.277-289
    • /
    • 2019
  • In this study, an innovative anchoring approach has been developed dealing with all relevant aspects in consideration of previous works. An ultimate pulling force calculation of anchor is presented from a geotechnical point of view. The proposed umbrella anchor focuses not only on the friction resistance capacity, but also on the axial capacity of the composite end structure and the friction capacity occurring around the wedge. Even though the theoretical background is proposed, in-situ application requires high-level mechanical design. Hence, the required parts have been carefully improved and are composed of anchor body, anchor cap, connection brackets, cutter vanes, open-close ring, support elements and grouting system. Besides, stretcher element made of aramid fabric, interior grouting system, guide tube and cable-locking apparatus are the unique parts of this design. The production and placement steps of real sized anchors are explained in detail. Experimental results of 52 pullout tests on the weak dry soils and 12 in-situ tests inside natural soil indicate that the proposed approach is conservative and its peak pullout value is directly limited by a maximum strength of anchored soil layer if other failure possibilities are eliminated. Umbrella anchor is an alternative to conventional anchor applications used in all types of soils. It not only provides time and workmanship benefits, but also a high level of economic gain and safe design.