• Title/Summary/Keyword: peak strength

Search Result 1,168, Processing Time 0.023 seconds

Effect of constant loading on unsaturated soil under water infiltration conditions

  • Rasool, Ali Murtaza;Kuwano, Jiro
    • Geomechanics and Engineering
    • /
    • v.20 no.3
    • /
    • pp.221-232
    • /
    • 2020
  • In many tropical regions, soil structures often fail under constant loads as a result of decreasing matric suction due to water infiltration. Most of the previous studies have been performed by infiltrating water in the soil specimen by keeping shear stress constant at 85-90% of peak shear strength in order to ensure specimen failure during water infiltration. However, not many studies are available to simulate the soil behavior when water is infiltrated at lower shear stress and how the deformations affect the soil behavior if the failure did not occur during water infiltration. This research aimed at understanding both the strength and deformation behavior of unsaturated soil during the course of water infiltration at 25%, 50% and 75% of maximum deviatoric stress and axial strain by keeping them constant. A unique stress-strain curve expresses the transient situation from unsaturated condition to failure state due to water infiltration is also drawn. The shearing-infiltration test results indicate that the water infiltration reduces matric suction and increase soil deformation. This research also indicates that unsaturated soil failure problems should not always be treated as shear strength problems but deformation should also be considered while addressing the problems related to unsaturated soils.

Effects of Heat Treatment on the Micro-structures and the Mechanical Properties of 0.002% Boron-added Low Carbon Steel (0.002% 보론첨가 저탄소강의 미세조직 및 기계적 성질에 미치는 열처리의 영향)

  • Lim, Jong-Ho;Kim, Jong-Sik;Park, Byung-Ho;Lee, Jin-Hyeon;Choi, Jeong-Mook
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.303-308
    • /
    • 2011
  • The effect of heat treatment on the micro-structures and the mechanical properties of 0.002% boron added low carbon steel was investigated. The tensile strength reached the peak at about $880-890^{\circ}C$ with the rising quenching temperature and then the hardness decreased sharply, but the tensile strength hardly decreased. The tensile and yield strength decreased and the total elongation increased with a rising tempering temperature, but the tensile and yield strength sharply fell and the total elongation prominently increased from above a $400-450^{\circ}C$ tempering temperature. Tempered martensite embrittlement (TME) was observed at tempering condition of $350-400^{\circ}C$. In the condition of quenching at $890^{\circ}C$ and tempering at $350^{\circ}C$, the boron precipitates were observed as Fe-C-B and BN together. The hardness decreased in proportion to the tempering temperature untill $350^{\circ}C$ and dropped sharply above $400^{\circ}C$ regardless of the quenching temperature.

Experimental study on the tensile strength of gravelly soil with different gravel content

  • Ji, Enyue;Chen, Shengshui;Zhu, Jungao;Fu, Zhongzhi
    • Geomechanics and Engineering
    • /
    • v.17 no.3
    • /
    • pp.271-278
    • /
    • 2019
  • In recent years, the crack accidents of earth and rockfill dams occur frequently. It is urgent to study the tensile strength and tensile failure mechanism of the gravelly soil in the core for the anti-crack design of the actual high earth core rockfill dam. Based on the self-developed uniaxial tensile test device, a series of uniaxial tensile test was carried out on gravelly soil with different gravel content. The compaction test shows a good linear relationship between the optimum water content and gravel content, and the relation curve of optimum water content versus maximum dry density can be fitting by two times polynomial. For the gravelly soil under its optimum water content and maximum dry density, as the gravel content increased from 0% to 50%, the tensile strength of specimens decreased from 122.6 kPa to 49.8 kPa linearly. The peak tensile strain and ultimate tensile strain all decrease with the increase of the gravel content. From the analysis of fracture energy, it is proved that the tensile capacity of gravelly soil decreases slightly with the increasing gravel content. In the case that the sample under the maximum dry density and the water content higher than the optimum water content, the comprehensive tensile capacity of the sample is the strongest. The relevant test results can provide support for the anti-crack design of the high earth core rockfill dam.

An experimental and numerical analysis of concrete walls exposed to fire

  • Baghdadi, Mohamed;Dimia, Mohamed S.;Guenfoud, Mohamed;Bouchair, Abdelhamid
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.819-830
    • /
    • 2021
  • To evaluate the performance of concrete load bearing walls in a structure under horizontal loads after being exposed to real fire, two steps were followed. In the first step, an experimental study was performed on the thermo-mechanical properties of concrete after heating to temperatures of 200-1000℃ with the purpose of determining the residual mechanical properties after cooling. The temperature was increased in line with natural fire curve in an electric furnace. The peak temperature was maintained for a period of 1.5 hour and then allowed to cool gradually in air at room temperature. All specimens were made from calcareous aggregate to be used for determining the residual properties: compressive strength, static and dynamic elasticity modulus by means of UPV test, including the mass loss. The concrete residual compressive strength and elastic modulus values were compared with those calculated from Eurocode and other analytical models from other studies, and were found to be satisfactory. In the second step, experimental analysis results were then implemented into structural numerical analysis to predict the post-fire load-bearing capacity response of the walls under vertical and horizontal loads. The parameters considered in this analysis were the effective height, the thickness of the wall, various support conditions and the residual strength of concrete. The results indicate that fire damage does not significantly affect the lateral capacity and stiffness of reinforced walls for temperature fires up to 400℃.

Bond strength characterization and estimation of steel fibre reinforced polymer - concrete composites

  • Jahangir, Hashem;Eidgahee, Danial Rezazadeh;Esfahani, Mohammad Reza
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.803-816
    • /
    • 2022
  • Composite materials are effective in forming externally bonded reinforcements which find applications related to existing structures repair, attributed to their high strength-to-weight ratio and ease of installation. Among various composites, fibre reinforced polymers (FRP) have somewhat been largely accepted as a commonly utilized composite for such purposes. It is only recently that steel fibres have been considered as additional members of the FRP fibre family, intuitively termed as steel reinforced polymer (SRP). Owing to its low cost and permissibility of fibre bending at sharp corners, SRP is rapidly becoming a viable contender to other FRP systems. This paper investigates the bond behaviour of SRP-concrete joints with different bonded lengths (50, 75, 100, 150 and 300 mm) and widths (15, 30, 40, 50, and 75 mm) using single-lap shear tests. The experimental specimens contain SRP strips with a fixed density of steel fibres (0.472 cords/mm) bonded to the face of concrete prisms. The load responses were obtained and compared in terms of corresponding load and slip boundaries of the constant region and the peak loads. The failure modes of SRP composites are discussed, and the range of effective bonded length is evaluated herein. In the end, a new analytical model was proposed to estimate the SRP-concrete bond strength using a genetic algorithm, which outperforms 22 existing FRP-concrete bond strength models.

Mechanical and fracture behavior of rock mass with parallel concentrated joints with different dip angle and number based on PFC simulation

  • Zhao, Weihua;Huang, Runqiu;Yan, Ming
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.757-767
    • /
    • 2015
  • Rock mass is an important engineering material. In hydropower engineering, rock mass of bank slope controlled the stability of an arch dam. However, mechanical characteristics of the rock mass are not only affected by lithology, but also joints. On the basis of field geological survey, this paper built rock mass material containing parallel concentrated joints with different dip angle, different number under different stress conditions by PFC (Particle Flow Code) numerical simulation. Next, we analyzed mechanical property and fracture features of this rock mass. The following achievements have been obtained through this research. (1) When dip angle of joints is $15^{\circ}$ and $30^{\circ}$, with the increase of joints number, peak strength of rock mass has not changed much. But when dip angle increase to $45^{\circ}$, especially increase to $60^{\circ}$ and $75^{\circ}$, peak strength of rock mass decreased obviously with the increase of joints number. (2) With the increase of confining stress, peak strengths of all rock mass have different degree of improvement, especially the rock mass with dip angle of $75^{\circ}$. (3) Under the condition of no confining stress, dip angle of joints is low and joint number is small, existence of joints has little influence on fracture mode of rock mass, but when joints number increase to 5, tensile deformation firstly happened at joints zone and further resulted in tension fracture of the whole rock mass. When dip angle of joints increases to $45^{\circ}$, fracture presented as shear along joints, and with increase of joints number, strength of rock mass is weakened caused by shear-tension fracture zone along joints. When dip angle of joints increases to $60^{\circ}$ and $75^{\circ}$, deformation and fracture model presented as tension fracture zone along concentrated joints. (4) Influence of increase of confining stress on fracture modes is to weaken joints' control function and to reduce the width of fracture zone. Furthermore, increase of confining stress translated deformation mode from tension to shear.

Effect of Pull-out Property by Shape and Mechanical Property of Reinforcing Fiber on the Flexural Behavior of Concrete (보강섬유의 형상과 물성에 따른 인발특성이 콘크리트의 휨거동에 미치는 영향)

  • Kim, Hong-Seop;Nam, Jeong-Soo;Kim, Jung-Hyun;Han, Sang-Hyu;Kim, Gyu-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.41-50
    • /
    • 2014
  • This study evaluated the bonding property of fiber and flexural behavior of fiber reinforced concrete. Amorphous steel fiber, hooked steel fiber and polyamide fiber was used for evaluation of bonding property and flexural behavior. As a result, the hooked steel fiber was pulled out from matrix when peak stress. However amorphous steel fiber occurred shear failure because bonding strength between fiber and matrix was higher than tensile strength of fiber. Polyamide fibers occurred significantly displacement to peak stress because of elongation of fiber. After that peak stress, fiber was cut off. Amorphous steel fiber reinforced concrete had a greater maximum flexural load compared with hooked steel fiber reinforced concrete because bonding performance between fiber and matrix was high and mixed population of fiber was many. However flexural stress was rapidly reduced in load-deflection curve because of shear failure of fiber. Flexural stress of hooked steel fiber reinforced concrete was slowly reduced because fiber was pulled out from the matrix. In the case of polyamide fiber reinforced concrete, flexural stress was rapidly lowered because of elongation of fiber. However flexural stress was increased again because of bonding property between polyamide fiber and matrix. The pull-out properties of the fiber and matrix has effect on the deformation capacity and flexural strength of fiber reinforced concrete.

Dentin bond strength of bonding agents cured with Light Emitting Diode (LIGHT EMITTING DIODE로 광조사한 상아질 접착제의 상아질 전단접착강도와 중합률에 관한 연구)

  • Kim Sun-Young;Lee In-Bog;Cho Byeong-Hoon;Son Ho-Hyun;Kim Mi-Ja;Seok Chang-In;Um Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.6
    • /
    • pp.504-514
    • /
    • 2004
  • This study compared the dentin shear bond strengths of currently used dentin bonding agents that were irradiated with an LED (Elipar FreeLight, 3M-ESPE) and a halogen light (VIP, BISCO). The optical characteristics of two light curing units were evaluated. Extracted human third molars were prepared to expose the occlusal dentin and the bonding procedures were performed under the irradiation with each light curing unit. The dentin bonding agents used in this study were Scotchbond Multipurpose (3M ESPE), Single Bond (3M ESPE), One-Step (Bisco), Clearfil SE bond (Kuraray), and Adper Prompt (3M ESPE), The shear test was performed by employing the design of a chisel-on-iris supported with a Teflon wall. The fractured dentin surface was observed with SEM to determine the failure mode. The spectral appearance of the LED light curing unit was different from that of the halogen light curing unit in terms of maximum peak and distribution. The LED LCU (maximum peak in 465 nm) shows a narrower spectral distribution than the halogen LCU (maximum peak in 487 nm). With the exception of the Clearfil SE bond (P < 0.05), each 4 dentin bonding agents showed no significant difference between the halogen light-cured group and the LED light-cured group in the mean shear bond strength (P > 0.05). The results can be explained by the strong correlation between the absorption spectrum of camphoroquinone and the narrow emission spectrum of LED.

Numerical simulations of progression of damage in concrete embedded chemical anchors

  • Sasmal, S.;Thiyagarajan, R.;Lieberum, K.H.;Koenders, E.A.B.
    • Computers and Concrete
    • /
    • v.22 no.4
    • /
    • pp.395-405
    • /
    • 2018
  • In this paper, the performance of post-installed adhesive bonded anchor embedded in concrete is assessed using numerical simulations. This study aims at studying the influence of parameters on the performance of a chemically bonded anchorage system. Non-linear finite element modelling and simulations are carried out by properly using the material properties and phenomenon. Materials parameters such as characteristic length, fracture energy, damage criteria, tension retention and crack width of concrete and interface characteristics are carefully assigned so as to obtain a most realistic behaviour of the chemical anchor system. The peak strength of two different anchor systems obtained from present numerical studies is validated against experimental results. Furthermore, validated numerical models are used to study the load transferring mechanism and damage progression characteristics of various anchors systems where strength of concrete, strength of epoxy, and geometry and disposition of anchors are the parameters. The process of development of strain in concrete adjacent to the anchor and energy dissipated during the course of damage progression are analysed. Results show that the performance of the considered anchorage system is, though a combined effect of material and geometric parameters, but a clear distinction could be made on the parameters to achieve a desired performance based on strength, slip, strain development or dissipated energy. Inspite the increase in anchor capacity with increase in concrete strength, it brings some undesirable performance as well. Furthermore, the pullout capacity of the chemical anchor system increases with a decrease in disparity among the strength of concrete and epoxy.

Effect of light-curing, pressure, oxygen inhibition, and heat on shear bond strength between bis-acryl provisional restoration and bis-acryl repair materials

  • Shim, Ji-Suk;Lee, Jeong-Yol;Choi, Yeon-Jo;Shin, Sang-Wan;Ryu, Jae-Jun
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.1
    • /
    • pp.47-50
    • /
    • 2015
  • PURPOSE. This study aimed to discover a way to increase the bond strength between bis-acryl resins, using a comparison of the shear bond strengths attained from bis-acryl resins treated with light curing, pressure, oxygen inhibition, and heat. MATERIALS AND METHODS. Self-cured bis-acryl resin was used as both a base material and as a repair material. Seventy specimens were distributed into seven groups according to treatment methods: pressure - stored in a pressure cooker at 0.2 Mpa; oxygen inhibition- applied an oxygen inhibitor around the repaired material,; heat treatment - performed heat treatment in a dry oven at $60^{\circ}C$, $100^{\circ}C$, or $140^{\circ}C$. The shear bond strength was measured with a universal testing machine, and the shear bond strength (MPa) was calculated from the peak load of failure. A comparison of the bond strength between the repaired specimens was conducted using one-way ANOVA and Tukey multiple comparison tests (${\alpha}$=.05). RESULTS. There were no statistically significant differences in the shear bond strength between the control group and the light curing, pressure, and oxygen inhibition groups. However, the heat treatment groups showed statistically higher bond strengths than the groups treated without heat, and the groups treated at a higher temperature resulted in higher bond strengths. Statistically significant differences were seen between groups after different degrees of heat treatment, except in groups heated at $100^{\circ}C$ and $140^{\circ}C$. CONCLUSION. Strong bonding can be achieved between a bis-acryl base and bis-acryl repair material after heat treatment.