• Title/Summary/Keyword: peak strength

Search Result 1,168, Processing Time 0.028 seconds

Deformation Behaviors and Acoustic Emissions of Rock Joints in Direct Shear (직접전단시험을 통한 암석 절리의 변형거동 및 미소파괴음 발생에 관한 연구)

  • 김태혁;이상돈;이정인
    • Tunnel and Underground Space
    • /
    • v.4 no.3
    • /
    • pp.274-286
    • /
    • 1994
  • Direct shear tests were on ducted in a laboratory setting in order to investigate the shear strength and deformation behavior of rock joints. Also, the characteristics of acoustic emissions (AE) during shearing of rock joints were studied. The artificial rock joints were created by splitting the intact blocks of Hwangdeung granites and Iksan marbles. Joint roughness profiles were measured by a profile gage and then digitized by Image analyzer. Roughness profile indices(Rp) of the joints were calculated with these digitized data. Peak shear strength, residual shear strength, shear stiffness and maximum acoustic emission(AE) rate were investigated with joint roughness. The peak shear strenght, the residual shear strength and the shear stiffness were increased as roughness popfile index or normal stress increased in the shear tests of granites. In the tests of marble samples, the shear deformation characteristics were not directly affected by joint roughness. As the result of two directional shear tests, the shear characteristics were varied with shear direction. AE count rates were measured during the shear deformation and the AE signals in several stages of the deformation were analyzed in a frequency domain. The AE rate peaks coincided with the stress drops during the shear deformation of joint. The dominant frequencies of the AE signals were in the vicinity of 100 kHz fo rgranite sample and 900 kHz for marble samples. The distribution of amplitude was dispersed with increasing normal stress.

  • PDF

The Effect of Static Stretching and Evjenth-Hamberg Stretching for Isokinetic Muscle Strength of Knee Joint (정적인 스트레칭과 Evjenth-Hamberg 스트레칭이 슬관절 등속성 근력에 미치는 효과)

  • Ko, Tae-Sung;Joung, Ho-Bal
    • The Journal of Korean Physical Therapy
    • /
    • v.18 no.5
    • /
    • pp.43-51
    • /
    • 2006
  • Purpose: The purpose of this study was to examine the effects of static stretching and Evjenth-Hamberg stretching on isokinetic muscle strength of knee flexors and extensors. Methods: The subjects were composed of eighty healthy males without weight-training experience. ROM of knee joint measured active maximal extension and isokinetic Peak Torque measured $60^{\circ}/sec,\;120^{\circ}/sec$ using an the En-Knee. Three tests(Baseline, 4 weeks, 8 weeks, respectively) was operated to examine change of each variable. Data were analyzed with a $2{\times}3$ analysis of variance ($group{\times}test$) for repeated measures on last factor by SPSS package 10.0. The data analysis revealed muscle strength were dependent on stretching method. Results: The results were as follows. First, Evjenth-Hamberg stretching(E-HS) was more effective than static stretching(SS) on ROM. Second, Peak Torque of knee flexors and extensors was improved in both methods by each time. but E-HS was more improved than SS. Conclusion: In conclusion, This study indicates that E-HS is more efficient than SS on muscle strength improvement.

  • PDF

Effect of Wearing a Thermal Compression Sleeve on Isokinetic Strength and Muscle Activity of Wrist Flexors and Extensors

  • Kim, Ki Hong;Jeong, Hwan Jong;Hong, Chan Jeong;Kim, Hyun Sung;Kim, Byung Kwan
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.183-191
    • /
    • 2022
  • The purpose of this study, the wearing conditions of functional pressure clothing applied with the thermotherapy device were determined by three types (NW, CW, TCW) and the difference in isokinetic strength, muscle activity around the forearm was investigated and the effects of products mixed with thermotherapy and pressure treatment were verified. Ten men in their 20s were selected as subjects, and all subjects were randomly assigned three wearing conditions, and wrist flexion/extension exercise was performed at 30° and 90° angular velocity in isokinetic equipment. Peak torque, average power, and EMG were measured during exercise in all conditions. For peak torque, CW was significantly highest at velocity of 30°/sec flexion. Average power showed no significant difference by condition. In the angular velocity of 90°/sec, flexion was significantly higher in CW and TCW than in NW. As a result, wearing clothes with pressure effect and heat effect can show high efficiency in high muscle strength development and fast contraction activity during low speed exercise, and it is thought that it can show improvement of exercise ability through efficient recruitment of motor unit.

Axial load-strain relationships of partially encased composite columns with H-shaped steel sections

  • Bangprasit, Papan;Anuntasena, Worakarn;Lenwari, Akhrawat
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.51-66
    • /
    • 2022
  • This paper presents the axial compression behavior of partially encased composite (PEC) columns using H-shaped structural steel. In the experimental program, a total of eight PEC columns with H-shaped steel sections of different flange and web slenderness ratios were tested to investigate the interactive mechanism between steel and concrete. The test results showed that the PEC columns could sustain the load well beyond the peak load provided that the flange slenderness ratio was not greater than five. In addition, the previous analytical model was extended to predict the axial load-strain relationships of the PEC columns with H-shaped steel sections. A good agreement between the predicted load-strain relationships and test data was observed. Using the analytical model, the effects of compressive strength of concrete (21 to 69 MPa), yield strength of steel (245 to 525 MPa), slenderness ratio of flange (4 to 10), and slenderness ratio of web (10 to 25) on the interactive mechanism (Kh = confinement factor for highly confined concrete and Kw = reduction factor for steel web) and ductility index (DI = ratio between strain at peak load and strain at proportional load) were assessed. The numerical results showed that the slenderness of steel flange and yield strength of steel significantly influenced the compression behavior of the PEC columns.

Association of the Explosive Strength of Knee Extensors with Skeletal Muscle Mass, Peak Torque, and Joint Angular Velocity

  • Jeongwoo Jeon
    • Physical Therapy Rehabilitation Science
    • /
    • v.13 no.3
    • /
    • pp.304-314
    • /
    • 2024
  • Objective: This study aimed to investigate the association of explosive strength with muscle mass and muscle function measured using traditional methods such as peak torque (PT) and joint angular velocity (PAV). Design: Cross-sectional study Methods: Twenty-nine healthy adults (14 males and 15 females) participated in this study. Body mass index and appendicular skeletal muscle index (ASMI) were measured using bioelectrical impedance analysis. The explosive strength of the knee extensors was evaluated by measuring the rate of torque development (RTD) and rate of velocity development (RVD). RTD was analyzed by dividing it into early (0-50 ms) and late (100-200 ms) muscle contraction phases. In addition, PT and PAV were measured as traditional methods for assessing muscle function. Results: According to regression analysis, PAV accounts for 24.7% and 66.9% of the variance of RTD 0-50 (p=0.006) and RVD (p<0.001), respectively. On the other hand, ASMI (p=0.035) and isometric PT (p=0.001) explained 49.2% of the RTD 100-200. Conclusions: Early RTD is mainly predicted by PAV, which is thought to be a result of muscle fiber type. Therefore, PAV presents the possibility of an alternative method to evaluate explosive performance. Late RTD seems to be related to ASMI or isometric PT. The findings of this study are expected to contribute to musculoskeletal rehabilitation and evaluation in that they revealed factors contributing to early and late muscle contraction.

Comparison of Body Composition, Physical Fitness, Isokinetic Strength between a major in EMT Students and a major in Physical Education Students (응급구조 전공과 체육 전공학생의 신체구성, 체력 및 슬관절 등속성 근기능 비교 연구 - 대전·충남을 중심으로 -)

  • Cho, Byung-Jun;Kim, Hak-Soo
    • The Korean Journal of Emergency Medical Services
    • /
    • v.9 no.2
    • /
    • pp.129-136
    • /
    • 2005
  • The purpose of this study was to compare the level of physical fitness and isokinetic strength, between EMT student and physical education students. Nine a major in EMT student volunteers, and nine a major in physical education student volunteers participated in that study as subjects. The basic physical body composition, fitness and isokinetic strength were measured. The data obtained in the study was analyzed by SPSS PC+ for window version 10.0. The difference in the mean of each variable between the two groups was analyzed by using the independent t-test and the significance level for all analysis was set at <.05. The results were as follows ; 1. There was a significant difference in the basic physical fitness between the two groups with the exception flexibility. The difference showed the statistical significance on back strength, balance and power in physical education students. 2. There were significant difference in body composition between the two groups with the exception of lean body fat. The difference showed the statistical significance on body fat%, body fat mass in the physical education students. 3. There was significant defference in the isokinetic strength between the two group. The difference showed the statistical significance on peak torque, peak torque B/W%. It was concluded that the physical education students may not have an effect of flexibility; however, back strength, balance, power, body composition, isokinetic strength, could be enhanced due to the long-term period of training. Based on the findings of this study, the regular participation of regular exercise help the untrained men achieve health-related fitness.

  • PDF

Effects of Contrast Agent Concentration on the Signal Intensity and Turbo Factor of TSE and Slice-selective IR in T1-weighted Contrast Imaging

  • Han, Yong Soo;Lee, Soo Chul;Lee, Dong Yong;Choi, Jiwon;Lee, Jong Woong;Kweon, Dae Cheol
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.115-124
    • /
    • 2016
  • The present study analyzes T1 TSE and T1 slice sel. IR (dark_fluid) signal strength according to the degree of gadolinium contrast agent dilution and analyzes the turbo factors with regard to changes in the maximum and overall signal strength to study correlations between changes and signal-to-noise ratios (SNRs) and compare peak-to-peak SNR (PSNR) enhancement in order to improve the quality of T1-weighted images. Enhancement TR (600 msec) evaluated to determine the T1 TSE turbo factor and obtain the maximum signal strength, T1WI were used sequentially to experiment with turbo factors_1-4. T1 slice sel. IR (dark-fluid) was used to sequentially test turbo factors_2-5 but not turbo factor_1 at a TR (1500 msec) and compare data at an increase in T1 of 900 msec. The T1 TSE was reduced according to the contrast agent concentration. Phantom signal strength increased, whereas turbo factors_1-4 exhibited maximum signal strength at a concentration of 3 mmol, followed by a gradual decrease. In the turbo factors_2-5, the signal strength increased sharply to maximum signal strength at 0.7 mmol, followed by a reduction. T1 TSE had a greater maximum signal strength than did T1 slice sel. IR (dark_fluid). A comparison of SNR found that T1 TSE imaging was superior (33.3 dB) in turbo factor_1 and T1 slice sel. IR (dark_fluid) was highest (33.9 dB) at turbo factor_5. A PSNR comparison analysis was not sufficient to distinguish between the images obtained with both techniques at 30 dB or higher under all experimental conditions.

Confinement Effect by Plate Type Lateral Reinforcement and Investigation of the Possibility for Use of High Strength Steel Bars in Reinforced Concrete Columns (횡방향 판재에 의한 횡구속 효과 및 철근콘크리트 기둥에서 고강도 철근의 사용성 검토)

  • Cho, Young-Jae;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.643-650
    • /
    • 2012
  • The limitation of the yield strength in reinforced concrete columns is given for the effective use of high-strength steel bar, because very high-strength steel bar does not yield while concrete fails in compression. In order to overcome this limitation, it is required to increase peak strain of the concrete. The objective of this study is to examine the confinement effect of plate type lateral reinforcement in reinforced concrete columns. From this experimental study, the reinforced concrete columns confined by plate type carbon fiber sheets showed higher compressive strength and peak concrete strain comparing to the unconfined columns. The confinement effect is higher when cross-sectional type is a circular one than a square one. Moreover, the confinement effect was also higher for circular type confinement. Based on this study, high-strength steel bars with strength exceeding 800 MPa can be effectively used for reinforced concrete columns confined by plate type lateral reinforcements.

Concrete Maturity Method Using Variable Temperature Curing: Experimental Study (가변 온도 양생 방법을 이용한 콘크리트 성숙도 (Maturity)의 실험적 고찰)

  • Kim, Tae-Wan;Kim, Kwang-Soo;Han, Kyung-Bong;Park, Sun-Kyu;Oh, Seok-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.693-700
    • /
    • 2007
  • The maturity method is used to estimate the effects of time and temperature on the strength development of concrete. The purpose of this paper is to show how variable curing temperatures affect strength development for both normal and high-strength concrete using the maturity concept. The experimental results for normal-strength concrete show clearly the cross-over effect of strength development as the time of the peak temperature varied. However, this cross-over effect does not exist after the actual ages are converted to the temperature dependent equivalent age. In other words, the existing maturity method does not include the effect of varying the time to peak temperatures but instead includes the effect of the magnitude of peak temperatures. For high-strength concrete, the results were inconclusive. This fact for normal-strength concrete coincides with the ASTM stated limitation that the existing maturity method doesn't take into account the effect of early age temperature on long-term ultimate strength. The results of this 3-year study are used as a basis for an improved concrete maturity function.

Geosynchronous Magnetic Field Response to Solar Wind Dynamic Pressure

  • Park, Jong-Sun;Kim, Khan-Hyuk;Lee, Dong-Hun;Lee, En-Sang;Jin, Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.1
    • /
    • pp.27-36
    • /
    • 2011
  • The present study examines the morning-afternoon asymmetry of the geosynchronous magnetic field strength on the dayside (magnetic local time [MLT] = 06:00~18:00) using observations by the Geostationary Operational Environmental Satellites (GOES) over a period of 9 years from February 1998 to January 2007. During geomagnetically quiet time (Kp < 3), we observed that a peak of the magnetic field strength is skewed toward the earlier local times (11:07~11:37 MLT) with respect to local noon and that the geosynchronous field strength is larger in the morning sector than in the afternoon sector. That is, there is the morning-afternoon asymmetry of the geosynchronous magnetic field strength. Using solar wind data, it is confirmed that the morning-afternoon asymmetry is not associated with the aberration effect due to the orbital motion of the Earth about the Sun. We found that the peak location of the magnetic field strength is shifted toward the earlier local times as the ratio of the magnetic field strength at MLT = 18 (B-dusk) to the magnetic field strength at MLT = 06 (B-dawn) is decreasing. It is also found that the dawn-dusk magnetic field median ratio, B-dusk/B-dawn, is decreasing as the solar wind dynamic pressure is increasing. The morning-afternoon asymmetry of the magnetic field strength appears in Tsyganenko geomagnetic field model (TS-04 model) when the partial ring current is included in TS-04 model. Unlike our observations, however, TS-04 model shows that the peak location of the magnetic field strength is shifted toward local noon as the solar wind dynamic pressure grows in magnitude. This may be due to that the symmetric magnetic field associated with the magnetopause current, strongly affected by the solar wind dynamic pressure, increases. However, the partial ring current is not affected as much as the magnetopause current by the solar wind dynamic pressure in TS-04 model. Thus, our observations suggest that the contribution of the partial ring current at geosynchronous orbit is much larger than that expected from TS-04 model as the solar wind dynamic pressure increases.