DOI QR코드

DOI QR Code

Axial load-strain relationships of partially encased composite columns with H-shaped steel sections

  • Bangprasit, Papan (Composite Structures Research Unit, Department of Civil Engineering, Faculty of Engineering, Chulalongkorn University) ;
  • Anuntasena, Worakarn (Composite Structures Research Unit, Department of Civil Engineering, Faculty of Engineering, Chulalongkorn University) ;
  • Lenwari, Akhrawat (Composite Structures Research Unit, Department of Civil Engineering, Faculty of Engineering, Chulalongkorn University)
  • 투고 : 2020.12.21
  • 심사 : 2022.12.12
  • 발행 : 2022.10.10

초록

This paper presents the axial compression behavior of partially encased composite (PEC) columns using H-shaped structural steel. In the experimental program, a total of eight PEC columns with H-shaped steel sections of different flange and web slenderness ratios were tested to investigate the interactive mechanism between steel and concrete. The test results showed that the PEC columns could sustain the load well beyond the peak load provided that the flange slenderness ratio was not greater than five. In addition, the previous analytical model was extended to predict the axial load-strain relationships of the PEC columns with H-shaped steel sections. A good agreement between the predicted load-strain relationships and test data was observed. Using the analytical model, the effects of compressive strength of concrete (21 to 69 MPa), yield strength of steel (245 to 525 MPa), slenderness ratio of flange (4 to 10), and slenderness ratio of web (10 to 25) on the interactive mechanism (Kh = confinement factor for highly confined concrete and Kw = reduction factor for steel web) and ductility index (DI = ratio between strain at peak load and strain at proportional load) were assessed. The numerical results showed that the slenderness of steel flange and yield strength of steel significantly influenced the compression behavior of the PEC columns.

키워드

과제정보

The first author would like to acknowledge the 90th Anniversary Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund) and the Civil Engineering Centennial Scholarship of Chulalongkorn University.

참고문헌

  1. AISC (2016), AISC Shapes Database, American Institute of Steel Construction, Chicago-Illinois. https://www.aisc.org/globalassets/aisc/manual/v15.0-shapesdatabase/aisc-shapes-database-v15.0.xlsx.
  2. AISC (2016), A Specification for Structural Steel Buildings (ANSI/AISC 360-16), American Institute of Steel Construction, Chicago-Illinois.
  3. Al-Shahari, A.M., Hunaiti, Y.M. and Ghazaleh, B.A., (2003), "Behavior of lightweight aggregate concrete-encased composite columns", Steel Compos. Struct., 3(2), 97-110. https://doi.org/10.12989/scs.2003.3.2.097.
  4. Anuntasena, W., Lenwari, A. and Thepchatri, T. (2020) "Axial compression behavior of concrete-encased cellular steel columns", J. Construct. Steel Res., 172, 106220. https://doi.org/10.1016/j.jcsr.2020.106220.
  5. ASTM (2013), Standard Test Methods for Tension Testing of Metallic Materials (ASTM E8 / E8M-13a), ASTM International, West Conshohocken, PA.
  6. ASTM (2016), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens (ASTM C39 / C39M-16), ASTM International, West Conshohocken, PA.
  7. Begum, M., Driver, R.G. and Elwi, A.E. (2013), "Behaviour of partially encased composite columns with high strength concrete", Eng. Struct., 56, 1718-1727. http://dx.doi.org/10.1016/j.engstruct.2013.07.040.
  8. Begum, M. and Ghosh, D. (2014), "Simulations of PEC columns with equivalent steel section under gravity loading", Steel Compos. Struct., 16, 305-323. https://doi.org/10.12989/scs.2014.16.3.305.
  9. Begum, M., Driver, R.G. and Elwi, A.E. (2015), "Parametric study on eccentrically-loaded partially encased composite columns under major axis bending", Steel Compos. Struct., 19, 1299-1319. https://doi.org/10.12989/scs.2015.19.5.1299.
  10. Chen, C.C. and Lin, N.J. (2006), "Analytical model for predicting axial capacity and behavior of concrete encased steel composite stub columns", J. Construct. Steel Res., 62(5), 424-433. https://doi.org/10.1016/j.jcsr.2005.04.021.
  11. Chen, S. and Wu, P. (2017), "Analytical model for predicting axial compressive behavior of steel reinforced concrete column". J. Construct. Steel Res., 128, 649-660. http://dx.doi.org/10.1016/j.jcsr.2016.10.001.
  12. Chicoine, T., Tremblay, R., Massicotte, B., Ricles, J.M. and Lu, Le-Wu. (2002), "Behavior and strength of partially encased composite columns with built-up shapes", J. Struct. Eng., 128(3), 279-288. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:3(279).
  13. Cusson, D. and Paultre, P. (1995). "Stress-strain model for confined high-strength concrete", J. Struct. Eng., 121(3), 468-477. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:4(286).
  14. Dastfan, M. and Driver, R. (2015), "Large-scale test of a modular steel plate shear wall with partially encased composite columns", J. Struct. Eng., 142, 04015142. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001424.
  15. Ebadi-Jamkhaneh, M., Kafi, M. and Kheyroddin A. (2018), "Behavior of partially encased composite members under various load conditions: Experimental and analytical models", Adv. Struct. Eng., 22, 94-111. https://doi.org/10.1177/1369433218778725.
  16. Elnashai, A. and Broderick, B. (1994), "Seismic resistance of composite beam-columns in multi-storey structures. Part 1: Experimental studies", J. Construct. Steel Res., 30(3), 201-229. https://doi.org/10.1016/0143-974X(94)90001-9.
  17. Elnashai, A. S., Elghazouli, A. Y., Takanashi, K. and Dowling, P. J. (1991), "Experimental behaviour of partially encased composite beam-columns under cyclic and dynamic loads", Institution Civil Eng. Proceedings Pt. 2, 91, 259-272. https://doi.org/10.1680/iicep.1991.14982.
  18. Giuffre, A. and Pinto P. (1970), "Il comportamento del cemento armato per sollecitazione ciclice di forte intensita. Giornale del Genio Civile", 391-408.
  19. Hoshikuma, J., Kawashima, K., Nagaya, K. and Taylor, A.W. (1997), "Stress-strain model for confined reinforced concrete in bridge piers", J. Struct. Eng., 123(5), 624-633. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(624)
  20. Hunaiti, Y. and Abdel Fattah, B. (1994), "Design considerations of partially encased composite columns", Proceedings of the Institution Civil Eng. Struct. Build., 104(1). https://doi.org/10.1680/istbu.1994.25681.
  21. Jamkhaneh, M.E., Ahmadi, M. and Sadeghian, P. (2020), "Simplified relations for confinement factors of partially and highly confined areas of concrete in partially encased composite columns", Eng. Struct., 208, 110303. https://doi.org/10.1016/j.engstruct.2020.110303.
  22. Kim, C., Park, H.-G., Chung, K.S. and Choi, I.R. (2014), "Eccentric axial load capacity of high-strength steel-concrete composite columns of various sectional shapes", J. Struct. Eng., 140, 04013091. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000879.
  23. Lai, B., Liew, J. Y. R., Venkateshwaran, A. and Xiong, M. (2020), "Assessment of high-strength concrete encased steel composite columns subject to axial compression", J. Construct. Steel Res., 164, 105765. https://doi.org/10.1016/j.jcsr.2019.105765.
  24. Lai, B., Richard Liew, J.Y. and Xiong, M., (2019), "Experimental study on high strength concrete encased steel composite short columns", Construct. Building Mater., 228, 116640. https://doi.org/10.1016/j.conbuildmat.2019.08.021
  25. Legeron, F. and Paultre, P. (2003), "Uniaxial confinement model for normal-and high-strength concrete columns", J. Struct. Eng., 129(2), 241-252. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:2(241).
  26. Mander, J.B., Priestley, M.J.N. and Park R. (1988a), "Observed stress-strain behavior of confined concrete", J. Struct. Eng,. 114(8), 1827-1849. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1827).
  27. Mander, J.B., Priestley, M.J.N. and Park, R. (1988b), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
  28. Mirza, S.A. and Skarbek, B.W. (1991), "Reliability of short composite beam-column strength interaction", J. Struct. Eng., 117(8), 2320-2339. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:8(2320).
  29. Mirza, S.A. and Skarbek, B.W. (1992), "Statistical analysis of slender composite beam-column strength", J. Struct. Eng., 118(5), 1312-1332. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1312).
  30. Mirza, S.A., Hyttinen, V. and Hyttinen, E. (1996), "Physical tests and analyses of composite steel concrete beam-columns", J. Struct. Eng., 122(11), 1317-1326. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:11(1317).
  31. Park, R. and Paulay, T. (1975). "Reinforced concrete structures", John Wiley & Sons. https://doi.org/10.1002/9780470172834.
  32. Pereira, M.F., De Nardin, S. and El Debs, A.L. (2016), "Structural behavior of partially encased composite columns under axial loads", Steel Compos. Struct., 20(6), 1305-1322. https://doi.org/10.12989/scs.2016.20.6.1305.
  33. Pereira, M.F., Nardin, S.D. and Debs, A. L.H.C.El. (2020), "Partially encased composite columns using fiber reinforced concrete: experimental study", Steel Compos. Struct., 34(6), 909-927. http://dx.doi.org/10.12989/scs.2020.34.6.909.
  34. Prickett, B.S. and Driver, R.G. (2006), "Behaviour of partially encased composite columns made with high performance concrete", Department of Civil and Environmental Engineering, University of Alberta Edmonton, AB, Canada. https://doi.org/10.1016/j.engstruct.2013.07.040.
  35. Razvi, S. and Saatcioglu, M. (1999), "Confinement model for high-strength concrete", J. Struct. Eng., 125(3), 281-289. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:3(281).
  36. Sheikh, S.A. and Uzumeri, S. (1982), "Analytical model for concrete confinement in tied columns", J. Struct. Division., 108(12), 2703-2722. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:12(2952).
  37. Song, Y.C., Wang, R.P. and Li, J. (2016), "Local and post-local buckling behavior of welded steel shapes in partially encased composite columns", Thin-Wall. Struct., 108, 93-108. http://dx.doi.org/10.1016/j.tws.2016.08.003.
  38. Task Group 20, S.S.R.C. (1979), "A specification for the design of steel-concrete composite columns", Eng. J., Fourth Quarter, 105-115.
  39. TIS (2015), Hot Rolled Structural Steel Industrial Standard. (TIS1227-15), Thai Industrial Satandard, Thailand.
  40. Tremblay, R., Chicoine, T. and Massicotte, B. (2002), "Design equation for the axial capacity of partially encased non-compact columns", Compos. Construct. Steel Concrete IV, 506-517. https://doi.org/10.1061/40616(281)44.
  41. Tremblay, R., Massicotte, B., Filion, I. and Maranda, R. (1998), "Experimental study on the behavior of partially encased composite columns made with light welded H steel shapes under compressive axial loads", 1998 SSRC Annual Technical Meeting., Atlanta, 195-204.
  42. Uy, B. (2001), "Axial compressive strength of steel and composite columns fabricated with high stength steel plate", Steel Compos. Struct., 1. https://doi.org/10.1016/B978-008043015-7/50049-X.
  43. Wang, H., Li, J. and Song, Y. (2018), "Numerical study and design recommendations of eccentrically loaded partially encased composite columns", Int. J. Steel Struct., 19. https://doi.org/10.1007/s13296-018-0179-7.
  44. Wang, Y.C. (1999), "Tests on slender composite columns", J. Construct. Steel Res., 49, 25-41. https://doi.org/10.1016/S0143-974X(98)00202-8.
  45. Xiao, C., Deng, F., Chen, T. and Zhao, Z. (2017), "Experimental study on concrete-encased composite columns with separate steel sections", Steel Compos. Struct., 23(4), 483-491. https://doi.org/10.12989/scs.2017.23.4.483.
  46. Yin, Z.Z., Chen, S.L., Liang, Y.X. and Chen, W. (2015), "Analysis of the composite effect of partially concrete-encased H-shaped steel composite columns", Mater. Res. Innov., 19(sup10), S10-133-S110-138. http://dx.doi.org/10.1179/1432891715Z.0000000002124.
  47. Zhao, X., Qin, H. and Chen Y. (2014), "Experimental study on constitutive model of steel confined concrete in SRC columns with cruciform steel section", J. Build. Struct., 4, 268-279.
  48. Zhu, W., Jia, J., Gao, J. and Zhang, F. (2016), "Experimental study on steel reinforced high-strength concrete columns under cyclic lateral force and constant axial load", Eng. Struct., 125, 191-204. https://doi.org/10.1016/j.engstruct.2016.07.018.
  49. Zhu, W., Meng, G. and Jia, J. (2014), "Experimental studies on axial load performance of high strength concrete short columns", Struct. Build., 167(9), 509-519. https://doi.org/10.1680/stbu.13.00027.