• 제목/요약/키워드: peak current

Search Result 1,752, Processing Time 0.03 seconds

Electrical Properties of Insulating Varnish (절연 바니시의 전기적특성)

  • 김정훈;신종열;변두균;이종필;조경순;김왕곤;홍진웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.299-302
    • /
    • 2001
  • In this study, we are studied the electrical conduction and dielectric breakdown properties of insulating varnish. In order to analyze the molecular structure and physical properties of insulating varnishs, FT-lR was used. As the result, it can be confirmed that the peak of alcoholic group appeared in wavenumbers 3452[cm$\^$-1], the peak of =CH appeared in 3080[cm$\^$-1] and the peak of -CH appeared in 2919[cm$\^$-1] respectively. The following results were obtained from electrical properties of insulating varnish. The amplitude of current density was decreased by thickness increasing and the current density was effected by the thermal energy from external due to temperature increasing. In study temperature dependence of dielectric strength, the specimen of 10[$\mu\textrm{m}$] thickness was measurement from room temperature to 180[$^{\circ}C$]. It is confirmed that the temperature regions below 60[$^{\circ}C$] is due to electron avalanche breakdown and the temperature regions over 60[$^{\circ}C$] is due to free volume breakdown which makes electron movements easy.

  • PDF

Thermally Assisted Carrier Transfer and Field-induced Tunneling in a Mg-doped GaN Thin Film (Mg가 첨가된 GaN 박막에서 캐리어 전이의 열적도움과 전계유도된 터러링 현상)

  • Chung, Sang-Geun;Kim, Yoon-Kyeom;Shin, Hyun-Gil
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.431-435
    • /
    • 2002
  • The dark current and photocurrent(PC) spectrum of Mg-doped GaN thin film were investigated with various bias voltages and temperatures. At high temperature and small bias, the dark current is dominated by holes thermally activated from an acceptor level Al located at about 0.16 eV above the valence band maximum $(E_v)$, The PC peak originates from the electron transition from deep level A2 located at about 0.34 eV above the $E_v$ to the conduction band minimum $(E_ C)$. However, at a large bias voltage, holes thermally activated from A2 to Al experience the field-in-duces tunneling to form one-dimensional defect band at Al, which determines the dark current. The PC peak associated with the transition from Al to $E_ C$ is also observed at large bias voltages owing to the extended recombination lifetime of holes by the tunneling. In the near infrared region, a strong PC peak at 1.20 eV appears due to the hole transition from deep donor/acceptor level to the valence band.

Characteristics of Wire EDM for Cold Die Steel due to the Different Wire Electrode Component (전극선 성분 변화에 따른 냉간금형용강의 와이어방전가공 특성)

  • Wang, Duck-Hyun;Jeong, Sun-Sung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.2
    • /
    • pp.98-105
    • /
    • 2003
  • In the experimental study, wire EDM was conducted for cold die steel by changing the Wire electrode, peak discharge current and number of finish cut. From the micro structure analysis of SEM photographs, the size of irregular welded and added component on the EDMed surface is decreasing and size of EDMed plane surface is increasing as the decreasing peak current and increasing number of finish cut. From the analysis of coating effect, Zn component is highly contained in Br and Zn Wire EDMed surface and copper component is highly contained in Br and Al wire EDMed surface. Hardness values are Increasing as the increasing peak current and decreasing the number of finish cut The value of hardness is decreasing as Cu, Al, Zn and Br wire electrode because of the residual austenite effect of solid solution copper on solidification, and finally EDMed surface has the highest hardness values for every wire electrode. Yield strength values becomes larger and bending strength values become smaller due to the increasing the hardness. These results are increased as increasing brittleness with hardness.

  • PDF

A study on the properties of thermally stimulated current of $(Sr_{0.85}-Ca_{0.15})$$TiO_3$ grain boundary layer ceramic ($(Sr_{0.85}-Ca_{0.15})$$TiO_3$ 입계층 세라믹의 열자력전류 특성에 관한 연구)

  • 김진사;김성열;유영각;최운식;이준웅
    • Electrical & Electronic Materials
    • /
    • v.9 no.4
    • /
    • pp.396-403
    • /
    • 1996
  • In this paper, the (S $r_{0.85}$.C $a_{0.15}$)Ti $O_{3}$ of paraelectric grain boundary layer (GBL) ceramics were fabricated, and the analysis of microstructuye and the thermally stimulated current(TSC) were investigated for understanding effects of GBL's interfacial phenomenon on variations of electrical properties. As a result, the three peaks of .alpha., .alpha. and .betha. were obtained at the temperature of -20 [.deg. C], 20[.deg. C] and 80[.deg. C], respectively. The origins of these peaks are that the .alpha. peak observed at -20[.deg. C] looks like to be ascribed to the ionization excitation from donor level in the grain, and the .alpha.' peak observed at 20[.deg. C] appears to show up by detrap of the trapped carrier of border between the oxidation layer and the grain, and the .betha. peak observed at 80[.deg. C] seems to be resulted from hopping conduction of existing carrier in the trap site of the border between the oxidation and second phase. and second phase.

  • PDF

PCRAM Flip-Flop Circuits with Sequential Sleep-in Control Scheme and Selective Write Latch

  • Choi, Jun-Myung;Jung, Chul-Moon;Min, Kyeong-Sik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.1
    • /
    • pp.58-64
    • /
    • 2013
  • In this paper, two new flip-flop circuits with PCRAM latches that are FF-1 and FF-2, respectively, are proposed not to waste leakage during sleep time. Unlike the FF-1 circuit that has a normal PCRAM latch, the FF-2 circuit has a selective write latch that can reduce the switching activity in writing operation to save switching power at sleep-in moment. Moreover, a sequential sleep-in control is proposed to reduce the rush current peak that is observed at the sleep-in moment. From the simulation of storing '000000' to the PCRAM latch, we could verify that the proposed FF-1 and FF-2 consume smaller power than the conventional 45-nm FF if the sleep time is longer than $465{\mu}s$ and $95{\mu}s$, respectively, at $125^{\circ}C$. For the rush current peak, the sequential sleep-in control could reduce the current peak as much as 77%.

A Novel Control Method of Resistance Spot Welding Inverter using Dynamic Resistance Characteristics for Weld Quality Improvement (용접품질 향상을 위한 저항 스폿 용접용 인버터의 동저항 특성을 이용한 새로운 제어기법)

  • Kang, Sung-Kwan;Jung, Jae-Hun;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.491-497
    • /
    • 2015
  • This study proposes a new control method for a resistance spot welding inverter to improve weld quality. The proposed method is based on the dynamic resistance characteristics of steel sheets to be welded. A point in the second peak value of the dynamic resistance occurs during one shot of the welding current flow. A constant voltage control is applied from zero to the peak point, and a constant current control is adopted from the peak point to the end of the shot. The mixed mode control of the constant voltage and current guarantees high weld quality. Experiments are conducted with a 5 kA power supply and 0.5 mm steel sheets to compare quality. Experimental results show that weld quality is improved more than 10 times that of the conventional control method.

Adaptive Control of Peak Current Mode Controlled Boost Converter Supplied by Fuel Cell

  • Bjazic, Toni;Ban, Zeljko;Peric, Nedjeljko
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.122-138
    • /
    • 2013
  • Adaptive control of a peak current mode controlled (PCM) boost converter supplied by a PEM fuel cell is described in this paper. The adaptive controller with reference model and signal adaptation is developed in order to compensate the deviation of the response during the change of the operating point. The procedure for determining the adaptive algorithm's weighting coefficients, based on a combination of the pole-zero placement method and an optimization method is proposed. After applying the proposed procedure, the optimal adaptive algorithm's weighting coefficients can be determined in just a few iterations, without the use of a computer, thus greatly facilitating the application of the algorithm in real systems. Simulation and experimental results show that the dynamic behavior of a highly nonlinear control system with a fuel cell and a PCM boost converter, can fairly accurately be described by the dynamic behavior of the reference model, i.e., a linear system with constant parameters.

A study on the behavior of charge particles of $(SR.Ca)TiO_3$ ceramic ($(SR.Ca)TiO_3$세라믹의 하전입자 거동에 관한 연구)

  • 김진사;최운식;신철기;김성열;박현빈;김태성;이준응
    • Electrical & Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.97-104
    • /
    • 1997
  • In this paper, in order to investigate the behavior of charged particles on (Sr.Ca)TiO$_{3}$ ceramics with paraelectric properties, the characteristics of electrical conduction and thermally stimulated current was measured respectively. As a result, the conduction mechanism is divided into three regions having different mechanism as the current increased. The region I below 200[V/Cm] shows the ohmic conduction. The region B between 200[V/cm] and 2000[V/cm] can be explained by the Poole-Frenkel emission theory, and the region III above 2000[V/cm] is dominated by the tunneling effect. The three peaks of TSC were obtained at the temperature of -20[.deg. C], 20[.deg. C] and 80[.deg. C], respectively. The origins of these peaks are that the .alpha. peak observed at -20[.deg. C] looks like to be ascribed to the ionization excitation from donor level in the grain, and the .alpha.' peak observed at 20 [.deg. C] appears to show up by hopping conduction of the trapped carrier of border between the oxidation layer and the grain, and the .betha. peak observed at 80[.deg. C] seems to be resulted from hopping conduction of existing carrier in the trap site of the border between the oxidation and second phase.

  • PDF

Influence on EDM Surface with the Copper and Graphite Electrode According to the Discharge Energy (방전에너지에 따라 동전극과 흑연전극이 방전가공면에 미치는 영향)

  • Choi, Jae-Yong;Jeon, Eon-Chan;Jeong, Jae-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.53-59
    • /
    • 1997
  • This study has been performed to inmvestigate MRR(metal removal rate), REW(relative electrode wear), surface roughness, heat transumutation layer and microhardness distribution in cross-section of the machined surface with various pulse-on duration and peak pulse current, using the copper and graphite electrode on the heat treated STD11 which is extensively used for metallic molding steel with the EDM. The results obtained are as follows; a) There exists critical pulse-on duration(If Ip equals 5A, .tau. on is 50 .mu. s) which shows the the maximum MRR in accordance with peak oulse current and the MRR decreases when the pulse-on duration exceeds the critical pulse-on during because of the abnormal electric discharge. b) Safe discharge is needed to make maximum of MRR and the metalic organization must be complicated for discharge induction. c) Graphite has much more benefits than copper electrode when rapid machining is done without electrode wear. d) The most external surface has the highest microhardness because of car- burizing from heat analysis of the dielectric fluid and the lower layar of the white covered layer has lower microhar dness than base matal because of softening.

  • PDF

Daily Electric Load Forecasting Based on RBF Neural Network Models

  • Hwang, Heesoo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.39-49
    • /
    • 2013
  • This paper presents a method of improving the performance of a day-ahead 24-h load curve and peak load forecasting. The next-day load curve is forecasted using radial basis function (RBF) neural network models built using the best design parameters. To improve the forecasting accuracy, the load curve forecasted using the RBF network models is corrected by the weighted sum of both the error of the current prediction and the change in the errors between the current and the previous prediction. The optimal weights (called "gains" in the error correction) are identified by differential evolution. The peak load forecasted by the RBF network models is also corrected by combining the load curve outputs of the RBF models by linear addition with 24 coefficients. The optimal coefficients for reducing both the forecasting mean absolute percent error (MAPE) and the sum of errors are also identified using differential evolution. The proposed models are trained and tested using four years of hourly load data obtained from the Korea Power Exchange. Simulation results reveal satisfactory forecasts: 1.230% MAPE for daily peak load and 1.128% MAPE for daily load curve.