• Title/Summary/Keyword: pavement temperature

Search Result 322, Processing Time 0.025 seconds

A Development of Strength Prediction Model of Epoxy Asphalt Concrete for Traffic Opening (교통개방을 위한 에폭시 아스팔트 콘크리트의 강도 예측모델 개발)

  • Baek, Yu Jin;Jo, Shin Haeng;Park, Chang Woo;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6D
    • /
    • pp.599-605
    • /
    • 2012
  • It is important to decide traffic opening time for construction plan of epoxy asphalt pavement. For this purpose, strength prediction model of epoxy asphalt concrete is required. In this study, Marshall stability was measured according to temperature and time for making strength properties equation. Strength prediction model was developed using chemical kinetics considering temperature variation. The traffic opening time of epoxy asphalt pavement on bridge deck has been predicted using the developed model. The prediction and actual traffic opening times were different by 17-days, because weathers of year 2009-2011 used in prediction model were different from weather of year 2012. When the prediction model used the actually measured temperatures of pavement, the difference between real opening time and prediction opening time was two days. The correlation analysis result between measured strength and prediction strength revealed that the $R^2$ using accurate temperature of pavement was 0.95. An improved precise prediction result is to be obtained if the prediction model uses accurate temperature data of pavement.

Analisys on Freezing Characteristics of Pavement Layer Using the Feild Pavement Model test (현장 모형 도로 축소 실험을 이용한 포장구성층의 동결 특성 분석)

  • Shin, Eun-Chul;Ryu, Byung-Hyun;Moon, Yong-Soo;Park, Jeong-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1164-1171
    • /
    • 2010
  • Korea is considered to be a seasonal frozen soil area that is thawed in the spring, and most of the area is frozen in winter as to the characteristic of geography. In the current design codes for anti-freezing layer, the thickness of anti freezing layer is calculated by freezing depth against the temperature condition. Therefore, they have a tendency of over-design and uniform thickness without the considerations of thermal stability, bearing capacity and frost susceptibility of materials. So, it is essential for studying the appropriateness and bearing capacity besides the seasonal and mechanical properties of pavement materials to take a appropriate and reasonable design of the road structure. In this research, the evaluation of frost susceptibility on subgrade, ant-freezing layer, sub base was conducted by means of the mechanical property test and laboratory field road model downed scale experiment. The temperature, heaving amount, heaving pressure and unfrozen water contents of soil samples, the subgrade, anti-freezing layer, sub base soils of highway construction site, were measured to determine the frost susceptibility.

  • PDF

Verification of Freezing Index and Frost Penetration Depth with Temperature Data of Korea LTPP (국내 LTPP 온도 자료를 이용한 동결지수와 동결깊이 검증 연구)

  • Kim, Boo-Il;Jeon, Sung-Il;Lee, Moon-Sup;Lim, Kwang-Su
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.143-152
    • /
    • 2009
  • The purpose of this study is to evaluate the freezing index and frost penetration depth. The freezing index and frost penetration depth were analyzed using air temperature and temperature profile of pavement system in Korea LTPP-SPS(Long Term Pavement Performance-Specific Pavement Study) site. The predicted frost penetration depth were then compared with the measured one from the LTPP sites. And the trend of annual freezing index was analyzed using the temperature data of meteorological stations located in the vicinity of Korea LTPP-SPS site. The result showed that the freezing index was rapidly decreased since 1987, and it was known that the use of freezing index determined from the past 30 years temperature data could cause the over estimates in the pavement thickness design. The temperature profile measured at 3 sections of LTPP-SPS sites showed that the temperature of subbase layer was above $0^{\circ}C$, even though anti-frost layers were found in these sections. Comparing the measured and calculated frost depth, the frost depth calculated from the subgrade frost penetration permissible method showed a similar trend with the measured frost depth.

  • PDF

A Study on the Temperature Prediction for Asphalt Pavement Using Field Monitoring Data (현장 계측자료를 이용한 아스팔트 포장체 온도 예측 연구)

  • An, Deok Soon;Park, Hee Mun;Eom, Byung Sik;Kim, Je Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.67-72
    • /
    • 2006
  • Temperature prediction in asphalt pavements is the one of most important factors for estimating the pavement response and predicting the pavement performance in the mechanistic-empirical pavement design. A study on temperature prediction procedure with variation of time and depth in asphalt pavements was conducted using field monitoring data. After selecting the temperature monitoring sections, the temperature sensors have been installed in different depths and the temperature data have been collected in every one hour. The developed pavement temperature prediction model was calibrated using field monitoring temperature data. The predicted temperatures were compared with measured temperatures at different seasons in selected sections. The results showed that the solar absorptivity and emissivity values in the fall is different from the values in other seasons. The predicted temperatures agree well with the measured temperatures at a wide range of temperatures. The temperature differences between each other fall in the range of ${\pm}3^{\circ}C$. It is also found that the regional characteristics did not affect the temperature prediction procedure.

An Analytical Study to Reduce Plastic Deformation in Intersection Pavements (교차로 포장 소성변형 저감을 위한 해석적 연구)

  • Choi, Jun-Seong;Lee, Kang-Hun;Kwon, Soo-Ahn;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.4
    • /
    • pp.29-36
    • /
    • 2012
  • PURPOSES : Plastic deformation is frequently made in intersection asphalt pavement at its early age due to deceleration and stoppage of vehicles. This study has been performed to provide a mechanistic basis for reasonable selection of paving method to minimize the plastic deformation at intersection. METHODS : Pavement layer, temperature, traffic volume of the intersections managed by the Daejeon Regional Construction and Management Administration were collected to calculate asphalt dynamic modulus with pavement depth by using a prediction equation suggested by the Korean pavement design guide. Performance of ordinary dense-graded asphalt pavement, polymer modified asphalt pavement, and fiber reinforced asphalt pavement was analyzed by finite element method and the results were used in a performance model to predict the plastic deformation. RESULTS : In aspect of performance, the three paving methods were usable under low traffic while the fiber reinforced asphalt pavement was the most suitable under heavy traffic. CONCLUSIONS : Reasonable paving method suitable for traffic characteristics in the intersection might be decided by considering economic feasibility.

A Study for Joint Freezing in Concrete Pavement (콘크리트포장의 줄눈의 잠김에 대한 연구)

  • Lee, Seung-Woo
    • International Journal of Highway Engineering
    • /
    • v.3 no.1 s.7
    • /
    • pp.165-176
    • /
    • 2001
  • Joints in jointed concrete Pavement are designed to control against randomly occurred cracks within slabs, which may be caused by temperature or moisture variation. The advantage of these artificial cracks (joints) over naturally occurred cracks are easy access of protections, such as installation of joint seal and load transfer mechanism. The potential benefits of joint seals are to prevent infiltration of surface water through the joint into underlying soil and intrusion of incompressible materials (debris, fine size aggregate) in to the joint, which may prevent weakening of underlying soils and spallings due to excessive compressive stress, respectively. For the adequate design of joint seal, horizontal variation of joint widths (horizontal joint movements) are essential inputs. Based on long-term in-situ joint movement data of sixteen jointed concrete pavement sections in Long Term Performance Pavement Seasonal Monitoring Program (LTPP SMP), it was indicated that considerable Portion of joints showed no horizontal movements with change in temperature. This Phenomenon is called 'Joint Freezing'. Possible cause for joint freezing is that designed penetrated cracks do not occur at a joint. In this study, a model for the prediction of the ratio of freezing joints in a particular pavement sections is proposed. In addition, possible effects of joint freezing against pavement performance are addressed.

  • PDF

Evaluation for Application of Warm-mix Asphalt Concrete for Rural Road Pavement (농촌 도로 포장용 준고온 아스팔트 콘크리트 적용 평가)

  • Lee, Sungjin;Kim, Kwang W.;Kim, Sungun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.2
    • /
    • pp.41-50
    • /
    • 2021
  • The asphalt pavement industry has introduced the warm-mix asphalt (WMA) as a mean of energy saving and environmentally safe technology, because the WMA mixture can be mixed and compacted at 30℃ lower than conventional hot-mix asphalt (HMA) at 160℃ or higher. The implementation of WMA can be a good option for paving operations for rural road in remote place, not only due to energy saving and environmental issues, but also lower working temperature. Using WMA technology, the cooled-down asphalt mixture can be still compacted to meet the quality requirement in narrow winding rural road in remote places. Therefore, this study is designed to evaluate engineering properties of WMA binders and concretes, which were prepared for rural road pavement. The objective of the study was to evaluate and suggest proper fundamental properties level of the WMA concrete for rural road pavement. The kinematic viscosity test result indicated that the WMA binders used in this study were effective for compaction at lower temperature, i.e., at 115℃, compared to the HMA binder. According to strength property analyses, it was found that the WMA concrete was acceptable for rural road pavement even though it was compacted at 30℃ lower level. Since the deformation strength (SD) of 3.2 MPa was found to satisfy rutting and cracking resistance minimum guidelines, this value was suggested as a minimum SD value for rural road pavement, considering lack of maintenance program for rural area.

Characteristics of Black Ice Using Thermal Imaging Camera (열화상카메라를 이용한 블랙아이스 특성 연구)

  • Kim, Seung-Jun;Yoon, Won-Sub;Kim, Yeon-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.873-882
    • /
    • 2021
  • In this study, a study was conducted to develop a system for predicting/responding to black ice occurring on roads in winter. Tests conditions were studied by making models of cement concrete pavement and asphalt concrete pavement. In order to freeze water on the manufactured model package, an tests was conducted at a temperature below zero using a freezer, and the freezing process was photographed using a thermal imaging camera. Black ice is generated when water is present on the road surface and the temperature is below freezing or the road surface temperature is below the dew point temperature. Under sub-zero conditions, the pavement, water, and ice were classified with a thermal imaging camera. As a result of the tests, it was possible to distinguish with a thermal imaging camera at a temperature below freezing in the same freezer due to the difference in the emissivity of the packaging, water, and ice. In the process of changing from water to ice during the tests, it was analyzed that ice and water were clearly distinguished by the thermal imaging camera due to the difference in emissivity and reflectance, so black ice could be predicted using the thermal imaging camera.

Behaviors of Early-Age Cracks on the JCP (무근 콘크리트포장 초기균열 거동 연구)

  • Park, Dae-Geun;Suh, Young-Chan;Ann, Sung-Sun;Kim, Hyung-Bae
    • International Journal of Highway Engineering
    • /
    • v.6 no.2 s.20
    • /
    • pp.47-59
    • /
    • 2004
  • The temperature variation of concrete pavement at early-age significantly affects the initiation and propagation of its early-age cracks. This implies that the measurement and analysis of early age temperature trend are necessary to examine the causes of early age cracks in the concrete pavement. In this study, it is investigated how the early age temperature trend in concrete pavement affects the random crack initiation and behaviors of saw-cut joints using the actual construction site which is located at the KHC test road. During 72 hours after placing the concrete pavement, the ambient air temperature and temperatures at the top, middle, and bottom in concrete pavement were measured and the random crack initiation in concrete slabs and early age behaviors in the joints were surveyed. The investigation results indicate that the first random crack was initiated at one of the slabs placed in the early morning which have higher temperature changes during early 72 hours. The movement of slab was influenced by the early-age crack in the joint. It suggested that the different occurrence time of the cracks in the joint had an influence on the behavior of the cracks. Besides, the slab constructed In the morning had higher possibility of crack initiation than that in the afternoon. The rarely occurred cracks had bigger gap than other cracks.

  • PDF

Behavior of Jointed Concrete Pavement by Box Culvert and Reinforced Slab (박스형 암거와 보강슬래브에 의한 줄눈 콘크리트 포장의 거동)

  • Park, Joo Young;Sohn, Dueck Su;Lee, Jae Hoon;Yan, Yu;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.25-35
    • /
    • 2012
  • PURPOSES : Hollows are easily made, and bearing capacity can be lowered near underground structures because sublayers of pavement settle for a long time due to difficult compaction at the position. If loadings are applied in this condition, distresses may occur in pavement and, as the result, its lifespan can decrease due to the stress larger than that expected in design phase. Although reinforced slab is installed on side of box culvert to minimize the distresses, length of the reinforced slab is fixed as 6m in Korea without any theoretical consideration. The purpose of this paper is investigating the behavior of concrete pavement according to the cover depth of the box culvert ad the length of the reinforced slab. METHODS : The distresses of concrete pavement slabs were investigated and cover depth was surveyed at position where the box culverts were located in expressways. The concrete pavements including the box culverts were modeled by finite element method and their behaviors according to the soil cover depth were analyzed. Wheel loading was applied after considering self weight of the pavement and temperature gradient of the concrete pavement slab at Yeojoo, Gyeonggi where a test road was located. After installing pavement joint at various positions, behavior of the pavement was analyzed by changing the soil cover depth and length of the reinforced slab. RESULTS : As the result, the tensile stress developed in the pavement slab according to the joint position, cover depth, and reinforced slab length was figured out. CONCLUSIONS : More reasonable and economic design of the concrete pavement including the box culvert is expected by the research results.