• Title/Summary/Keyword: pattern learning

Search Result 1,296, Processing Time 0.023 seconds

Contactless Data Society and Reterritorialization of the Archive (비접촉 데이터 사회와 아카이브 재영토화)

  • Jo, Min-ji
    • The Korean Journal of Archival Studies
    • /
    • no.79
    • /
    • pp.5-32
    • /
    • 2024
  • The Korean government ranked 3rd among 193 UN member countries in the UN's 2022 e-Government Development Index. Korea, which has consistently been evaluated as a top country, can clearly be said to be a leading country in the world of e-government. The lubricant of e-government is data. Data itself is neither information nor a record, but it is a source of information and records and a resource of knowledge. Since administrative actions through electronic systems have become widespread, the production and technology of data-based records have naturally expanded and evolved. Technology may seem value-neutral, but in fact, technology itself reflects a specific worldview. The digital order of new technologies, armed with hyper-connectivity and super-intelligence, not only has a profound influence on traditional power structures, but also has an a similar influence on existing information and knowledge transmission media. Moreover, new technologies and media, including data-based generative artificial intelligence, are by far the hot topic. It can be seen that the all-round growth and spread of digital technology has led to the augmentation of human capabilities and the outsourcing of thinking. This also involves a variety of problems, ranging from deep fakes and other fake images, auto profiling, AI lies hallucination that creates them as if they were real, and copyright infringement of machine learning data. Moreover, radical connectivity capabilities enable the instantaneous sharing of vast amounts of data and rely on the technological unconscious to generate actions without awareness. Another irony of the digital world and online network, which is based on immaterial distribution and logical existence, is that access and contact can only be made through physical tools. Digital information is a logical object, but digital resources cannot be read or utilized without some type of device to relay it. In that respect, machines in today's technological society have gone beyond the level of simple assistance, and there are points at which it is difficult to say that the entry of machines into human society is a natural change pattern due to advanced technological development. This is because perspectives on machines will change over time. Important is the social and cultural implications of changes in the way records are produced as a result of communication and actions through machines. Even in the archive field, what problems will a data-based archive society face due to technological changes toward a hyper-intelligence and hyper-connected society, and who will prove the continuous activity of records and data and what will be the main drivers of media change? It is time to research whether this will happen. This study began with the need to recognize that archives are not only records that are the result of actions, but also data as strategic assets. Through this, author considered how to expand traditional boundaries and achieves reterritorialization in a data-driven society.

Exploring Pre-Service Earth Science Teachers' Understandings of Computational Thinking (지구과학 예비교사들의 컴퓨팅 사고에 대한 인식 탐색)

  • Young Shin Park;Ki Rak Park
    • Journal of the Korean earth science society
    • /
    • v.45 no.3
    • /
    • pp.260-276
    • /
    • 2024
  • The purpose of this study is to explore whether pre-service teachers majoring in earth science improve their perception of computational thinking through STEAM classes focused on engineering-based wave power plants. The STEAM class involved designing the most efficient wave power plant model. The survey on computational thinking practices, developed from previous research, was administered to 15 Earth science pre-service teachers to gauge their understanding of computational thinking. Each group developed an efficient wave power plant model based on the scientific principal of turbine operation using waves. The activities included problem recognition (problem solving), coding (coding and programming), creating a wave power plant model using a 3D printer (design and create model), and evaluating the output to correct errors (debugging). The pre-service teachers showed a high level of recognition of computational thinking practices, particularly in "logical thinking," with the top five practices out of 14 averaging five points each. However, participants lacked a clear understanding of certain computational thinking practices such as abstraction, problem decomposition, and using bid data, with their comprehension of these decreasing after the STEAM lesson. Although there was a significant reduction in the misconception that computational thinking is "playing online games" (from 4.06 to 0.86), some participants still equated it with "thinking like a computer" and "using a computer to do calculations". The study found slight improvements in "problem solving" (3.73 to 4.33), "pattern recognition" (3.53 to 3.66), and "best tool selection" (4.26 to 4.66). To enhance computational thinking skills, a practice-oriented curriculum should be offered. Additional STEAM classes on diverse topics could lead to a significant improvement in computational thinking practices. Therefore, establishing an educational curriculum for multisituational learning is essential.

An analysis of daily lives of children in Korea, Japan and China (한국, 중국, 일본 유아들의 일상생활에 대한 비교연구)

  • Kisook Lee;Mira Chung;Hyunjung Kim
    • Korean Journal of Culture and Social Issue
    • /
    • v.12 no.5_spc
    • /
    • pp.81-98
    • /
    • 2006
  • The objective of this research is to do a cultural comparison on the daily lives of the children of Korea, Japan and China. To achieve this objective, the questionnares were distributed to the 2940 mothers of children from the ages of 3 to 6 in the countries of Korea, Japan and China. The target audience consisted of 941 mothers living in Seoul and Kyunggi area for Korea, 1007 mothers living in Tokyo for Japan, and 992 mothers living in Beijing for China. As a result of the research, we found out that firstly, although children in general got up anytime between 7:00am to 9:00am and went to bed between 8:00pm and 11:00pm, 61.5% of the Korean children went to bed after 10pm and 16.8% after 11pm. Besides that, we found that compared to 3.51% of Korean children who got up before 6am, 13.41% of Japanese children and 17.24% of Chinese children got up before 6:00am. So we could see that the Korean children got up later and went to bed later than their Japanese and Chinese counterpart. This pattern could also be seen in the average rising time and bed time. Korean children went to bed at 10:00pm and woke up at 7:75am whereas the Japanese children went to bed at 9:28pm and woke up at 7:39am, and the Chinese children went to bed at 9:05pm and woke up at 7:05am. The average sleeping hours for Japanese children was 10.12 hours, 9.50 hours for the Chinese and 9.75 hours for the Korean. As a result, we could see that the Korean children went to bed later, got up later and slept fewer hours than their Japanese and Chinese counterparts. Also, since the rising time and bedtime of the Korean children was later than those of the Chinese and Japanese counterparts, the former s' breakfast and dinner time was also much later. Secondly, we looked at the time children went off to and came back from institutes such as kindergarten and child care centers. The Chinese were earliest at going with average attendance at 7:83am, the Japanese came next at 8:59am and the Korean children were last at 8:90am, whereas the Japanese came first in coming back home at 3:36pm, Korean next at 3:91pm and the Chinese last at 5:46pm. Next when we looked at the hours spent at the kindergartens and child care centers, Japan spent 6.76 hours, Korea 7.01 hours and China spent the longest hours with 9.63 hours. Excluding China where all preschool institutes are centralized into kindergartens, we nest looked at time children went to and came back from the institutes as well as the time spent there. In the case of kindergarten, there was not much difference but in the case of child care centers, the Japanese children went to the child care centers mach earlier and came home later than the Korean children. Also, the time spent at the child care center was much longer for the Japanese than the Korean children. This fact coincides with the Korean mothers' number one wish to the kindergartens and child care centers i.e. for the institutes to prolong their school hours. Thus, the time spent at child care centers for Korea was 7.75 hours, 9.39 hours for Japan and 9.63 hours for China. The time for Korea was comparatively much shorter than that of Japan and China but if we consider the fact that 50% of the target audience was working mothers, we could easily presume that the working parents who usually use the child care centers would want the child care centers to prolong the hours looked after their children. Besides this, the next most wanted wish mothers have towards the child care centers and kindergartens was for those institutes to "look after their children when sick". This item showed high marks in all three countries, and the marks in Korea was especially higher when compared to Japan and China. Thirdly, we looked at the private extracurricular activities of the children. We found that 72.6% of the Korean children, 61.7% of the Japanese children, and 64.6% of the Chinese children were doing private extracurricular activities after attending kindergarten or day care centers. Amongst the private extracurricular activities done by Korean children, the most popular one was worksheet with 51.9% of the children doing it. Drawing (15.20%) and English (11.6%) came next. Swimming (21.95%) was the most popular activity for Japan, with English (17.48%), music (15,79%) and sports (14.70%) coming next. For China, art (30.95%) was first with English (22.08%) and music (19.96%) following next. All three countries had English as the most popular activity related to art and physical activities after school hours, but the rate for worksheet studies was much higher for Korea compared to Japan China. The reason Koreans universally use worksheet in because the parents who buy the worksheet are mothers who have easy access to advertisement or salespeople selling those products. The price is also relatively cheap, the worksheet helps the children to grow the basic learning ability in preparation for elementary school, and it is thought to help the children to build the habit of studying everyday. Not only that but it is estimated that the worksheet education is being conducted because parents can share the responsibility of the children's learning with the worksheet-teacher who make home visits. Looking at the expenses spent on private extracurricular activities as compared to income, we found that China spent 5% of income for activities outside of regular education, Korea 3% and Japan 2%. Fourthly, we looked at the amount of time children spent on using multimedia. The majority of the children in Korea, Japan and China watch television almost every day. In terms of video games, the Japanese children played the games the most, with Korea and China following next. The Korean children used the computer the most, with Japan and China next. The Korean children used about 21.17% of their daily time on computers which is much more than the Japanese who used 20.62% of their time 3 or 4 times a week, or the Chinese. The Chinese children were found to use considerably less time on multimedia compared to the Korean of Japanese.

Performance Improvement on Short Volatility Strategy with Asymmetric Spillover Effect and SVM (비대칭적 전이효과와 SVM을 이용한 변동성 매도전략의 수익성 개선)

  • Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.119-133
    • /
    • 2020
  • Fama asserted that in an efficient market, we can't make a trading rule that consistently outperforms the average stock market returns. This study aims to suggest a machine learning algorithm to improve the trading performance of an intraday short volatility strategy applying asymmetric volatility spillover effect, and analyze its trading performance improvement. Generally stock market volatility has a negative relation with stock market return and the Korean stock market volatility is influenced by the US stock market volatility. This volatility spillover effect is asymmetric. The asymmetric volatility spillover effect refers to the phenomenon that the US stock market volatility up and down differently influence the next day's volatility of the Korean stock market. We collected the S&P 500 index, VIX, KOSPI 200 index, and V-KOSPI 200 from 2008 to 2018. We found the negative relation between the S&P 500 and VIX, and the KOSPI 200 and V-KOSPI 200. We also documented the strong volatility spillover effect from the VIX to the V-KOSPI 200. Interestingly, the asymmetric volatility spillover was also found. Whereas the VIX up is fully reflected in the opening volatility of the V-KOSPI 200, the VIX down influences partially in the opening volatility and its influence lasts to the Korean market close. If the stock market is efficient, there is no reason why there exists the asymmetric volatility spillover effect. It is a counter example of the efficient market hypothesis. To utilize this type of anomalous volatility spillover pattern, we analyzed the intraday volatility selling strategy. This strategy sells short the Korean volatility market in the morning after the US stock market volatility closes down and takes no position in the volatility market after the VIX closes up. It produced profit every year between 2008 and 2018 and the percent profitable is 68%. The trading performance showed the higher average annual return of 129% relative to the benchmark average annual return of 33%. The maximum draw down, MDD, is -41%, which is lower than that of benchmark -101%. The Sharpe ratio 0.32 of SVS strategy is much greater than the Sharpe ratio 0.08 of the Benchmark strategy. The Sharpe ratio simultaneously considers return and risk and is calculated as return divided by risk. Therefore, high Sharpe ratio means high performance when comparing different strategies with different risk and return structure. Real world trading gives rise to the trading costs including brokerage cost and slippage cost. When the trading cost is considered, the performance difference between 76% and -10% average annual returns becomes clear. To improve the performance of the suggested volatility trading strategy, we used the well-known SVM algorithm. Input variables include the VIX close to close return at day t-1, the VIX open to close return at day t-1, the VK open return at day t, and output is the up and down classification of the VK open to close return at day t. The training period is from 2008 to 2014 and the testing period is from 2015 to 2018. The kernel functions are linear function, radial basis function, and polynomial function. We suggested the modified-short volatility strategy that sells the VK in the morning when the SVM output is Down and takes no position when the SVM output is Up. The trading performance was remarkably improved. The 5-year testing period trading results of the m-SVS strategy showed very high profit and low risk relative to the benchmark SVS strategy. The annual return of the m-SVS strategy is 123% and it is higher than that of SVS strategy. The risk factor, MDD, was also significantly improved from -41% to -29%.

Spatial effect on the diffusion of discount stores (대형할인점 확산에 대한 공간적 영향)

  • Joo, Young-Jin;Kim, Mi-Ae
    • Journal of Distribution Research
    • /
    • v.15 no.4
    • /
    • pp.61-85
    • /
    • 2010
  • Introduction: Diffusion is process by which an innovation is communicated through certain channel overtime among the members of a social system(Rogers 1983). Bass(1969) suggested the Bass model describing diffusion process. The Bass model assumes potential adopters of innovation are influenced by mass-media and word-of-mouth from communication with previous adopters. Various expansions of the Bass model have been conducted. Some of them proposed a third factor affecting diffusion. Others proposed multinational diffusion model and it stressed interactive effect on diffusion among several countries. We add a spatial factor in the Bass model as a third communication factor. Because of situation where we can not control the interaction between markets, we need to consider that diffusion within certain market can be influenced by diffusion in contiguous market. The process that certain type of retail extends is a result that particular market can be described by the retail life cycle. Diffusion of retail has pattern following three phases of spatial diffusion: adoption of innovation happens in near the diffusion center first, spreads to the vicinity of the diffusing center and then adoption of innovation is completed in peripheral areas in saturation stage. So we expect spatial effect to be important to describe diffusion of domestic discount store. We define a spatial diffusion model using multinational diffusion model and apply it to the diffusion of discount store. Modeling: In this paper, we define a spatial diffusion model and apply it to the diffusion of discount store. To define a spatial diffusion model, we expand learning model(Kumar and Krishnan 2002) and separate diffusion process in diffusion center(market A) from diffusion process in the vicinity of the diffusing center(market B). The proposed spatial diffusion model is shown in equation (1a) and (1b). Equation (1a) is the diffusion process in diffusion center and equation (1b) is one in the vicinity of the diffusing center. $$\array{{S_{i,t}=(p_i+q_i{\frac{Y_{i,t-1}}{m_i}})(m_i-Y_{i,t-1})\;i{\in}\{1,{\cdots},I\}\;(1a)}\\{S_{j,t}=(p_j+q_j{\frac{Y_{j,t-1}}{m_i}}+{\sum\limits_{i=1}^I}{\gamma}_{ij}{\frac{Y_{i,t-1}}{m_i}})(m_j-Y_{j,t-1})\;i{\in}\{1,{\cdots},I\},\;j{\in}\{I+1,{\cdots},I+J\}\;(1b)}}$$ We rise two research questions. (1) The proposed spatial diffusion model is more effective than the Bass model to describe the diffusion of discount stores. (2) The more similar retail environment of diffusing center with that of the vicinity of the contiguous market is, the larger spatial effect of diffusing center on diffusion of the vicinity of the contiguous market is. To examine above two questions, we adopt the Bass model to estimate diffusion of discount store first. Next spatial diffusion model where spatial factor is added to the Bass model is used to estimate it. Finally by comparing Bass model with spatial diffusion model, we try to find out which model describes diffusion of discount store better. In addition, we investigate the relationship between similarity of retail environment(conceptual distance) and spatial factor impact with correlation analysis. Result and Implication: We suggest spatial diffusion model to describe diffusion of discount stores. To examine the proposed spatial diffusion model, 347 domestic discount stores are used and we divide nation into 5 districts, Seoul-Gyeongin(SG), Busan-Gyeongnam(BG), Daegu-Gyeongbuk(DG), Gwan- gju-Jeonla(GJ), Daejeon-Chungcheong(DC), and the result is shown

    . In a result of the Bass model(I), the estimates of innovation coefficient(p) and imitation coefficient(q) are 0.017 and 0.323 respectively. While the estimate of market potential is 384. A result of the Bass model(II) for each district shows the estimates of innovation coefficient(p) in SG is 0.019 and the lowest among 5 areas. This is because SG is the diffusion center. The estimates of imitation coefficient(q) in BG is 0.353 and the highest. The imitation coefficient in the vicinity of the diffusing center such as BG is higher than that in the diffusing center because much information flows through various paths more as diffusion is progressing. A result of the Bass model(II) shows the estimates of innovation coefficient(p) in SG is 0.019 and the lowest among 5 areas. This is because SG is the diffusion center. The estimates of imitation coefficient(q) in BG is 0.353 and the highest. The imitation coefficient in the vicinity of the diffusing center such as BG is higher than that in the diffusing center because much information flows through various paths more as diffusion is progressing. In a result of spatial diffusion model(IV), we can notice the changes between coefficients of the bass model and those of the spatial diffusion model. Except for GJ, the estimates of innovation and imitation coefficients in Model IV are lower than those in Model II. The changes of innovation and imitation coefficients are reflected to spatial coefficient(${\gamma}$). From spatial coefficient(${\gamma}$) we can infer that when the diffusion in the vicinity of the diffusing center occurs, the diffusion is influenced by one in the diffusing center. The difference between the Bass model(II) and the spatial diffusion model(IV) is statistically significant with the ${\chi}^2$-distributed likelihood ratio statistic is 16.598(p=0.0023). Which implies that the spatial diffusion model is more effective than the Bass model to describe diffusion of discount stores. So the research question (1) is supported. In addition, we found that there are statistically significant relationship between similarity of retail environment and spatial effect by using correlation analysis. So the research question (2) is also supported.

  • PDF
  • North Korea's Overseas Transfer Dance - Focusing on Japan and China - (북한춤의 해외전파 : 일본과 중국을 중심으로)

    • Kim, Chae-Won
      • (The) Research of the performance art and culture
      • /
      • no.22
      • /
      • pp.185-221
      • /
      • 2011
    • This study overseas compatriots in the North during the propagation and development of dance patterns and was going to be based, people living outside of the dance culture as a group of overseas Koreans, especially dance culture of Koreans in Japan, China are interested in and thought about the necessity of the study. Issues discussed in the literature of research results, autonomous community of Koreans in Japan ethnic Koreans and Chinese dance culture dance Choi Seung-hee starting point common was, two ethnic groups, directly or indirectly from the Choi Seung-hee learn to dance or have received specialized training to work, compiled by Choi Seung-hee Korea on the basis of basic dance training was learning the dance. In addition, specialized training and dance training institutions in the North Koreans in Japan Social Dance Group for the system, such as dance training in a separate place where talented people through the exhaust, to act in a professional troupes have maintained a system. In contrast, Chinese ethnic Koreans in Yanbian Autonomous University and Central University for Nationalities in the dance departments are stationed there, the transfer from the Joseon dance dance by educating gifted talents have been dispose, South Korea and similar aspects of the dance education system can be seen. Dance work based training and the tendency of Koreans in Japan in terms of social practice and dance in the North of basic training as basic training and specialized training, and work to represent the North korea's famous dance folk dance performances have been transmitted intact. In China, however, ethnic Koreans Choi Seung-hee compiled by borough basis and the work of the North korean dance training or specialized training received directly from her, she founded the dance student of Choi Seung-hee developed basic techniques of Chinese ethnic dance and ethnic Koreans in China, while receiving only Sewonaga dance training system as a deal on exchanges with the North Korean dance dancing free dance culture for creation peppered ethnic Koreans in China was formed. When passed down to the time, Koreans in Japan since the 1960s, society began to visit Pyongyang in the 1970s, subjected to a direct transfer, and education and through the 1990s, the North Koreans in Japan by inviting dancers and dance directly to basic training by getting education bukhanchum As can be seen in the spectacular aspects will have to reproduce. However, ethnic Koreans in China in the 1950s in districts in Beijing, Pyongyang and received direct guidance from Choi Seung-hee, Dancers from the North after Pyongyang rather than direct guidance on the occasion of his visit to China Dance Troupe was affected. On the other hand Korean dance since the 1990s, starting with Ethnic Koreans in China only began to absorb a different dance culture has been created. The same nation, yet living in the region and to configure the ethnic groups, the configuration of the system and political system, according to the North Dancing transfer process and the development pattern similar, but each of the identities to ensure their own traits with a dance culture, the formation and develop the arrival of You can find out. In other words, Koreans in Japan and Federation of Koreans in Japan under the control of social forces of the dance culture by Acculturation variation of dance culture, dance culture of the borough ethnic Koreans in China Acculturation by the voluntary and free borrowers were able to gauge the changes in development.


    (34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
    Copyright (C) KISTI. All Rights Reserved.