• Title/Summary/Keyword: pattern discovery

Search Result 149, Processing Time 0.023 seconds

Customer Behavior Pattern Discovery by Adaptive Clustering Based on Swarm Intelligence

  • Dai, Weihui
    • Journal of Information Technology Applications and Management
    • /
    • v.17 no.1
    • /
    • pp.127-139
    • /
    • 2010
  • Customer behavior pattern discovery is the fundament for conducting customer oriented services and the services management. But, the composition, need, interest and experience of customers may be continuously changing, thereof lead to the difficulty in refining a stable description of their consistent behavior pattern. This paper presented a new method for the behavior pattern discovery from a changing collection of customers. It was originally inspired from the swarm intelligence of ant colony. By the adaptive clustering, some typical behavior patterns which reflect the characteristics of related customer clusters can extracted dynamically and adaptively.

  • PDF

A Grounded Theory on the Process of Scientific Rule-Discovery- Focused on the Generation of Scientific Pattern-Knowledge (과학적 규칙성 지식의 생성 과정: 경향성 지식의 생성을 중심으로)

  • 권용주;박윤복;정진수;양일호
    • Journal of Korean Elementary Science Education
    • /
    • v.23 no.1
    • /
    • pp.61-73
    • /
    • 2004
  • The purpose of this study was to suggest a grounded theory on the process of undergraduate students' generating pattern-knowledge about scientific episodes. The pattern-discovery tasks were administered to seven college students majoring in elementary education. The present study found that college students show five types of procedural knowledge represented in the process of pattern-discovery, such as element, elementary variation, relative prior knowledge, predictive-pattern, and final pattern-knowledge. Furthermore, subjects used seven types of thinking ways, such as recognizing objects, recalling knowledges, searching elementary variation, predictive-pattern discovery, confirming a predictive-pattern, combining patterns, and selecting a pattern. In addition, pattern-discovering process involves a systemic process of element, elementary variation, relative prior knowledge, generating and confirming predictive-pattern, and selecting final pattern-knowledge. The processes were shown the abductive and deductive reasoning as well as inductive reasoning. This study also discussed the implications of these findings for teaching and evaluating in science education.

  • PDF

Tree-based Navigation Pattern Analysis

  • Choi, Hyun-Jip
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.1
    • /
    • pp.271-279
    • /
    • 2001
  • Sequential pattern discovery is one of main interests in web usage mining. the technique of sequential pattern discovery attempts to find inter-session patterns such that the presence of a set of items is followed by another item in a time-ordered set of server sessions. In this paper, a tree-based sequential pattern finding method is proposed in order to discover navigation patterns in server sessions. At each learning process, the suggested method learns about the navigation patterns per server session and summarized into the modified Rymon's tree.

  • PDF

Spatiotemporal Moving Pattern Discovery using Location Generalization of Moving Objects (이동객체 위치 일반화를 이용한 시공간 이동 패턴 탐사)

  • Lee, Jun-Wook;Nam, Kwang-Woo
    • The KIPS Transactions:PartD
    • /
    • v.10D no.7
    • /
    • pp.1103-1114
    • /
    • 2003
  • Currently, one of the most critical issues in developing the service support system for various spatio-temporal applications is the discoverying of meaningful knowledge from the large volume of moving object data. This sort of knowledge refers to the spatiotemporal moving pattern. To discovery such knowledge, various relationships between moving objects such as temporal, spatial and spatiotemporal topological relationships needs to be considered in knowledge discovery. In this paper, we proposed an efficient method, MPMine, for discoverying spatiotemporal moving patterns. The method not only has considered both temporal constraint and spatial constrain but also performs the spatial generalization using a spatial topological operation, contain(). Different from the previous temporal pattern methods, the proposed method is able to save the search space by using the location summarization and generalization of the moving object data. Therefore, Efficient discoverying of the useful moving patterns is possible.

Pattern Discovery by Genetic Algorithm in Syntactic Pattern Based Chart Analysis for Stock Market

  • Kim, Hyun-Soo
    • The Journal of Information Systems
    • /
    • v.3
    • /
    • pp.147-169
    • /
    • 1994
  • This paper present s a pattern generation scheme from financial charts. The patterns constitute knowledge which consists of patterns as the conditional part and the impact of the pattern as the conclusion part. The patterns in charts are represented in a syntactic approach. If the pattern elements and the impact of patterns are defined, the patterns are synthesized from simple to the more highly credible by evaluating each intermediate pattern from the instances. The overall process is divided into primitive discovery by Genetic Algorithms and pattern synthesis from the discovered primitives by the Syntactic Pattern-based Inductive Learning (SYNPLE) algorithm which we have developed. We have applied the scheme to a chart : the trend lines of stock price in daily base. The scheme can generate very credible patterns from training data sets.

  • PDF

DISCOVERY TEMPORAL FREQUENT PATTERNS USING TFP-TREE

  • Jin Long;Lee Yongmi;Seo Sungbo;Ryu Keun Ho
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.454-457
    • /
    • 2005
  • Mining frequent patterns in transaction databases, time-series databases, and many other kinds of databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especially when there exist prolific patterns and/or long patterns. And calendar based on temporal association rules proposes the discovery of association rules along with their temporal patterns in terms of calendar schemas, but this approach is also adopt an Apriori-like candidate set generation. In this paper, we propose an efficient temporal frequent pattern mining using TFP-tree (Temporal Frequent Pattern tree). This approach has three advantages: (1) this method separates many partitions by according to maximum size domain and only scans the transaction once for reducing the I/O cost. (2) This method maintains all of transactions using FP-trees. (3) We only have the FP-trees of I-star pattern and other star pattern nodes only link them step by step for efficient mining and the saving memory. Our performance study shows that the TFP-tree is efficient and scalable for mining, and is about an order of magnitude faster than the Apriori algorithm and also faster than calendar based on temporal frequent pattern mining methods.

  • PDF

Extended Linear Vulnerability Discovery Process

  • Joh, HyunChul
    • Journal of Multimedia Information System
    • /
    • v.4 no.2
    • /
    • pp.57-64
    • /
    • 2017
  • Numerous software vulnerabilities have been found in the popular operating systems. And recently, robust linear behaviors in software vulnerability discovery process have been noticeably observed among the many popular systems having multi-versions released. Software users need to estimate how much their software systems are risk enough so that they need to take an action before it is too late. Security vulnerabilities are discovered throughout the life of a software system by both the developers, and normal end-users. So far there have been several vulnerability discovery models are proposed to describe the vulnerability discovery pattern for determining readiness for patch release, optimal resource allocations or evaluating the risk of vulnerability exploitation. Here, we apply a linear vulnerability discovery model into Windows operating systems to see the linear discovery trends currently observed often. The applicability of the observation form the paper show that linear discovery model fits very well with aggregate version rather than each version.

A Knowledge Discovery Framework for Spatiotemporal Data Mining

  • Lee, Jun-Wook;Lee, Yong-Joon
    • Journal of Information Processing Systems
    • /
    • v.2 no.2
    • /
    • pp.124-129
    • /
    • 2006
  • With the explosive increase in the generation and utilization of spatiotemporal data sets, many research efforts have been focused on the efficient handling of the large volume of spatiotemporal sets. With the remarkable growth of ubiquitous computing technology, mining from the huge volume of spatiotemporal data sets is regarded as a core technology which can provide real world applications with intelligence. In this paper, we propose a 3-tier knowledge discovery framework for spatiotemporal data mining. This framework provides a foundation model not only to define the problem of spatiotemporal knowledge discovery but also to represent new knowledge and its relationships. Using the proposed knowledge discovery framework, we can easily formalize spatiotemporal data mining problems. The representation model is very useful in modeling the basic elements and the relationships between the objects in spatiotemporal data sets, information and knowledge.

Development of a Knowledge Discovery System using Hierarchical Self-Organizing Map and Fuzzy Rule Generation

  • Koo, Taehoon;Rhee, Jongtae
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.431-434
    • /
    • 2001
  • Knowledge discovery in databases(KDD) is the process for extracting valid, novel, potentially useful and understandable knowledge form real data. There are many academic and industrial activities with new technologies and application areas. Particularly, data mining is the core step in the KDD process, consisting of many algorithms to perform clustering, pattern recognition and rule induction functions. The main goal of these algorithms is prediction and description. Prediction means the assessment of unknown variables. Description is concerned with providing understandable results in a compatible format to human users. We introduce an efficient data mining algorithm considering predictive and descriptive capability. Reasonable pattern is derived from real world data by a revised neural network model and a proposed fuzzy rule extraction technique is applied to obtain understandable knowledge. The proposed neural network model is a hierarchical self-organizing system. The rule base is compatible to decision makers perception because the generated fuzzy rule set reflects the human information process. Results from real world application are analyzed to evaluate the system\`s performance.

  • PDF

A Novel Approach for Mining High-Utility Sequential Patterns in Sequence Databases

  • Ahmed, Chowdhury Farhan;Tanbeer, Syed Khairuzzaman;Jeong, Byeong-Soo
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.676-686
    • /
    • 2010
  • Mining sequential patterns is an important research issue in data mining and knowledge discovery with broad applications. However, the existing sequential pattern mining approaches consider only binary frequency values of items in sequences and equal importance/significance values of distinct items. Therefore, they are not applicable to actually represent many real-world scenarios. In this paper, we propose a novel framework for mining high-utility sequential patterns for more real-life applicable information extraction from sequence databases with non-binary frequency values of items in sequences and different importance/significance values for distinct items. Moreover, for mining high-utility sequential patterns, we propose two new algorithms: UtilityLevel is a high-utility sequential pattern mining with a level-wise candidate generation approach, and UtilitySpan is a high-utility sequential pattern mining with a pattern growth approach. Extensive performance analyses show that our algorithms are very efficient and scalable for mining high-utility sequential patterns.