• 제목/요약/키워드: patient exposure dose

검색결과 380건 처리시간 0.029초

CT 촬영 조건에 따른 PET 영상의 변화 (Change of PET Image According to CT Exposure Conditions)

  • 박재윤;김정훈;이용기
    • 한국방사선학회논문지
    • /
    • 제13권3호
    • /
    • pp.473-479
    • /
    • 2019
  • 다양한 촬영 조건의 CT 감쇠 지도가 PET 영상에 영향을 미치는지 알아보기 위하여 다양한 kVp와 mA조건에서 Uniformity phantom 영상의 신호 강도(SI; Signal Intensity)와 표준 섭취율 계수(SUV; Standardized Uptake Value)를 측정하고, CTDI (Computed Tomography Dose Index)를 통해 각 조건에 따른 피폭선량을 측정하였다. 또한 동일한 조건에서 Resolution phantom의 반치폭(FWHM; Full Width at Half Maximum)을 측정하여 CT의 kVp와 mA에 따른 PET 영상의 화질 변화에 대하여 정량적으로 알아보고자 하였다. 연구 결과, CT의 촬영 조건은 PET 영상에는 영향을 주지 않는 것으로 나타났으나, CT의 촬영 조건이 감소하게 되면 방사선 피폭이 감소하게 되지만 영상에 영향을 미치게 되므로 향후 진단이 가능한 CT 화질을 유지하면서 방사선 피폭을 최소화할 수 있는 양전자 방출 단층 촬영(PET/CT; Positron Emission Tomography / Computed Tomography)의 촬영 조건에 대한 연구가 지속적으로 되어야 할 것이다.

X-선 장치의 기술적 인자의 변화에 따른 선량 비교 평가 (A Comparison of Dose in Changed Technique Factor Using X-ray Imaging System)

  • 한동균;고신관;선종률;윤석환;정재은
    • 대한디지털의료영상학회논문지
    • /
    • 제11권2호
    • /
    • pp.101-107
    • /
    • 2009
  • With the recent development of diagnosis using radiation and increasing demand of the medical treatment, we need to minimize radiation exposure dose. So, This is the method which reduce patient dose by measuring surface dose of radiographic change factor and by comparing theoretical and actual dose, when we take an X-ray which is generally used. By changing the factor of kV, mAs, FSD, whose range is 60 to 120 kV, 20 to 100 mAs, 80 to 180 cm, we compared theoretical surface dose with actual surface dose calculated by the simple calculation program, Bit system, and NDD-M method As a result, when kV and mAs were higher, theoretical surface dose and actual surface dose were more increased. but the higher FSD was, the more decreased surface dose was. According to this, the error were measured about 0.1 to 0.2 mGy in low dose part and about 0.7 to 1.5 mGy in high dose part. Therefore, this shows that theoretical surface dose calculation method is more correct in low dose part than in high dose part. In conclusion, we will have to make constant efforts which can reduce patient and radiographer's exposure dose, studying methods which can predict patient's radiation exposure dose more exactly.

  • PDF

환자 이송원의 피폭선량 측정 (A Measurement of Exposure Dose for Patient Transporter)

  • 송채림;이왕희;안성민
    • 한국방사선학회논문지
    • /
    • 제13권3호
    • /
    • pp.433-438
    • /
    • 2019
  • 의료기관에서는 환자의 진단 및 치료를 위해 방사선발생장치 및 방사성동위원소를 사용하고 있다. 환자이송원은 환자이송을 위해 불가피하게 방사선 관리구역에 출입하거나, 동위원소가 투여된 환자를 근거리에서 이송하는 등 일반인과 비교했을 때, 방사선에 노출될 확률이 높은 환경에서 업무를 수행한다. 따라서 환자이송원의 피폭 정도를 알아보고자 연구를 진행했다. 인천 A 종합병원에서 근무하고 있는 12명의 환자이송원을 대상으로 2019년 4월 1일부터 4월 30일까지 한 달 동안 선량계를 가슴에 패용하고, 누적된 선량을 측정했다. 사용된 선량계는 광자극발광선량계(OSLD), 선량판독은 OSLD Microstar Reading System을 사용했다. 한 달 동안 누적선량 측정 결과 심부선량은 평균 0.13 mSv, 표층선량은 평균 0.13 mSv로 측정되었고, 한 달 동안 누적된 선량에 12를 곱해 일 년 동안 업무를 수행할 시 받게 될 누적선량 예상치를 추정한 결과 심부선량은 평균 1.52 mSv, 표층선량은 평균 1.51 mSv로 나타났다. 환자이송원의 수시출입자 분류를 통해 피폭선량을 측정, 관리 하고, 교육훈련을 통해 방사선에 대한 방호지식을 높이며 건강진단을 통해 방사선장해 발생을 방지하기 위한 노력이 필요하다.

컴퓨터 단층촬영(CT) 방사선 노출 관리 시스템 소프트웨어 설계 (System Software Design of Computed Tomography Radiation Dose Management)

  • 양유미;이길흥;조상욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 춘계학술대회
    • /
    • pp.489-492
    • /
    • 2014
  • 본 논문에서는 컴퓨터 단층활영(CT)을 통해 발생되는 방사선 노출량의 관리를 위한 시스템의 소프트웨어 설계를 제안한다. 방사선 피폭량은 환자의 각 신체 부위별로 민감성의 차이에 따라 다르기 때문에 방사선의 노출량을 관리할 수 있게 되면 결과적으로 환자의 방사선 피폭량을 추정할 수 있다. 최근 일본 원전의 방사선 누출 사건이 국제적으로 뉴스가 되었고 원전 뿐 만아니라 의료용 방사선 피폭까지 폭넓게 관심이 커지고 있다. 현재 방사선 안전관리는 방사선 관계 종사자에 대해서만 관리되고 있지만, 이제는 환자에 대한 피폭 관리까지 요구되고 있다. 우리나라에서 방사선을 이용한 검사와 시술이 증가하여 이에 따른 의료 피폭이 증가하였으나 의료 기관에서는 환자에게 가해지는 방사선 피폭 수치를 알지 못하는 실정이다. 따라서 의료 기관에서 환자의 방사선 피폭을 관리할 수 있는 시스템이 필요하다. 본 논문에서는 의료 기관에서 방사선을 이용하는 대표적인 촬영 도구인 CT의 방사선 노출량을 관리할 수 있는 소프트웨어 설계를 제시한다. 방사선의 노출량을 확인하고 선량의 한도를 설정함으로써 환자의 의료 피폭량을 최적화 하는데 도움이 되고자 한다.

  • PDF

흉부질환의 화질과 피폭을 고려한 촬영조건의 연구 (A Study on the Chest Radiography with Diseases in Consideration of Image Qualify and Patient Exposure)

  • 이만구;임태랑;석전유치
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제20권2호
    • /
    • pp.56-62
    • /
    • 1997
  • To evaluated the image quality and the patient exposure for the chest radiography, its fundamental imaging properties were investigated. The basic imaging properties were evaluated by measuring characteristic curves, relative speeds, average gradient, and patient exposure dose. The image qualities were evaluated by using a rotating meter. It was found that the film gradient of SRO750/SRH system was 3.13 and that of SRO750/HR-C30 was 1.77. The ratio of SRO1000/TMH to FS/RP-1 was 1 to 18.2. It was possible to visualize the static image when the exposure time was less than 2.5 msec in patient that had respiratory excessive motion, heart beat and natural physical motion, and less than 8.5 msec in normal. The ratio of medical exposure dose compared with our method was 1 to 25 in the routine chest radiography and maximum was 1 to 70. In estimation of the image quality in same cases, we found that the image of SRO1000/SRH and TMH of super sensitive systems was the same results. We found that these super sensitive screen-film systems were available for the chest radiography considering the relationship between the image quality and patient exposure.

  • PDF

The Experience in Dose Measurement of IVR with Glass Dosimeter System

  • Nishizawa, Kanae;Moritake, Takashi;Iwai, Kazuo;Matsumaru, Yuji;Tsuboi, Koji;Maruyama, Takashi
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.269-271
    • /
    • 2002
  • It is reported that exposure for the patient and the medical staff from IVR is large. Direct measurement of patient exposure is difficult, since the measurement disturbs reading of images. The fluorescence glass-dosimeter system consisting of small-size glass chips is developed in recent years. Owing to its small size and physical characteristics, direct monitoring of surface dose may be feasible. The dose measurement for patient and medical staff during head interventional radiology (IVR) examinations was tried by using the fluorescence glass-dosimeter system. A dose response of the glass dosimeter is almost linear in large dose range but its energy dependency is high. About 20% variation of sensitivity was observed in the effective energy of 45-60keV which was used in IVR. In spite of this shortcoming, the fluorescence glass-dosimeter system is a convenient means for a dose monitoring during IVR performance.

  • PDF

복부 일반촬영시 초점-필름간거리 변화가 피폭선량 및 화질에 미치는 영향 (Effects on Patient Exposure Dose and Image Quality by Increasing Focal Film Distance in Abdominal Radiography)

  • 김유현;권수일
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제21권1호
    • /
    • pp.52-58
    • /
    • 1998
  • We can and must improve the diagnostic images using available knowledge and technology. At the same time we must strive to reduce the patient's integral and entrance radiation dose. Reducing the integral dose to the patient during the radiologic procedure is a primary concern of the patient, especially the pediatric patient, the radiologist and the technologist. A 100cm focal film distance generally is used for most over-table radiography. The early x-ray tubes and screen film combinations required long exposures, which often resulted in motion artifacts. But nowaday, we have the generators and x-ray tubes that can deliver the energy necessary in a very short time and the receptors that can record the information just as rapidly. And, we performed this studies to evaluate the patient exposure dose and the image quality by increasing focal film distance in diagnostic radiography. There are many factors which affected to exposure factor, but we studied to verify of FFD increase, only. Effect of increasing the focal film distance to a 140 cm distance was tested as follows; 1. The focal film distances were set at 100, 120, and 140cm. 2. A 18cm acryl(tissue equivalent) phantom was placed on the table top. 3. An Capintec 192 electrometer with PM 05 ion chamber was placed at the entrance surface of the phantom, and exposure were made at each focal film distances. 4. The procedure was repeated in the same manner as above except the ion chamber was placed beneath the phantom at the film plane. 5. Exit exposure were normalize to 8mR for each portions of the experiment. Based on the success of the empirical measurements, a detailed mathematical analysis of the dose reduction was performed using the percent depth dose data. The results of this study can be summerized as followings ; 1) Increasing FFD from 100 cm to 140 cm, we would create a situation that would have a significant effect on the overall quality of radiograph and achive the 17.42% reduction of entrance dose and the 18.95% reduction of integral dose that the patient receives. 2) Thickness of Al step wedge for equal film density increased with the long distance. 3) Increasing FFD, Magnification of image was lowered. 4) Resolution of image also increased with the FFD. As the results described above, we strongly recommend using the long FFD to provide better information for our patients and profession in abdomen radiographic studies.

  • PDF

X선 진단시 피폭선량을 반으로 줄이기 위한 Cu Filter의 두께 (The thickness of Cu Filter to reduce 1/2 of the patient dose)

  • 김정민;김성철
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제24권1호
    • /
    • pp.17-22
    • /
    • 2001
  • Medical X-ray examination are increased double for the last $6{\sim}8$ years. Therefore a patient exposure dose should be decrease half every 7 years. We made an experiment on copper filter thickness to decrease a patient exposure dose up to half and compared to the Image quality by MTF. The results as follow 1. A thin region like extremities needs a thicker Cu filter as compared a thick region. 2. 1/2 reduction filter must be thicker when kVp Increase. 3. Exposure factor should be increas when using 1/2 reduction filter ; extremity is 4.0 times, chest 2.9 times, skull 1.62 times, and abdomen 1.58 times 4. The MTF of using 1/2 reduction filter is lower than without filter. But no difference of visual image. 5. 1/2 reduction filter compared with double speed screen showed almost same image quality.

  • PDF

복부 선자세 단순촬영시 화질과 피폭선량에 관한 연구 (A Study on the Image Quality and Patient Dose in Erect Simple Abdomen Radiography)

  • 김정민;임태랑;석전유치;앵정달야
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제21권1호
    • /
    • pp.29-34
    • /
    • 1998
  • The purpose of simple abdomen erect projection is to see the fluid level which indicates gastrointestinal ileus or free air due to perforation. we do not have to insist on low kVp technique in simple abdomen erect position as long as we can detect the fluid level and free air shadow. Therefore, the author tried to decrease patient dose by high kVp technique and to improve the image quality due to motion artifact by reduction of exposure time. [Methods] Experiment 1. * screen/film SRO1000/HRH * exposure factor : $140\;kvp{\pm}5\;kv$ with added filters, 200 mA, 0.01 sec * phantom : Acryles : 15.0 cm(equivalent to 17 cm body thickness) 17.5 cm(equivalent to 21 cm body thickness) 20.0 cm (equivalent to 25 cm body thickness) With the exposure factor for same film density($D=0.8{\pm}0.1$) and with the materials above, we tried to find out entrance skin dose and gonad dose for both male and female. Experiment 2. Burger's phantom radiography were checked to see whether there was any change of image quality according to the kVp and the added filters. Experiment 3. Using rotating meter(self made), we examined the motion artifact and the exposure time limitation. [Results and conculution] 1. Using high voltage technique of 140 kVp with added filter, Skin dose, testicle dose and ovary dose decrease to 89.3%, 47% and 71.4% respectively compare to 70 kVp technique, 2. No great changes of Burger's phantom image has detected as from 70 kVp to 140 kVp and the air hole size of Burger's phantom over 0.028 cc(Diameter 3 mm, hight 4 mm) can be distinghished. 3. 0.01 sec(1 pulse) exposure time is possible in the single phase full wave rectification that why we can quitely reduce the unsharness caused by patient's movement.

  • PDF

중재적 시술 시 팬텀을 이용한 환자의 피폭선량 분석 (TA Study on Patient Exposure Dose Used the Phantom for Interventional Procedure)

  • 강병삼;동경래
    • 대한디지털의료영상학회논문지
    • /
    • 제13권2호
    • /
    • pp.71-76
    • /
    • 2011
  • Because interventional procedure operates looking at premier as real time when perate intervention enemy, by patient is revealed during suitableness time in radiation, side effect such as radiation injury of skin is apt to happen. It established by purpose of study that measure exposure dose that patient receives about these problem, and find solution for radiation injury and repletion method. In this study, we used Rando phantom of identical structure with the human body which becomes accomplished with 4 branch ingredient of the attempt and system equivalent material them and absorbed dose were measured by TLD. According to the laboratory, it shows that operations such as TFCA procedure or uterine myoma embolization are more dangerous than TACE procedure. If both operations are inspected during a short time, it is not affected in being bombed. However, it can lead to palliative agenesis or depilate, definitive agenesis only if operations are repeated more than three times. Dose distibution based on experiment, to reduce radiation exposure to patients result from reduction of scatter ray as we control field size of radiation and protection of side organs except for tumor. also we knew that we can protect patients form radiation exposure, if we increas SOD and decrease SID.

  • PDF