Purpose: The purpose of this study was to revise the KPCS-1 and to standardize the three patient classification systems for general ward, ICU and NICU. The actual utilization of the KPCS-1 score and each nursing activity was evaluated and the relationships between KPCS-1 score and nursing related variables were reviewed. Methods: The 47,711 KPCS-1 scores of 6,931 patients who discharged from $1^{st}$ to $30^{th}$ April 2017 were analyzed and the statistical significance between KPCS-1 score and nursing related variables was reviewed by Generalized Estimating Equation. The revision of the KPCS-1 was carried out by Partial Least Square model. The 3 patient classification systems (KPCS-1,KPCSC and KPCSN) were standardized by professional reviews. Results: KPCS-1 was a valid instrument to express nursing condition adequately and was revised as a new version which has 34 nursing activity items. The names and terminologies of pre-existing 3 patient classification systems developed by KHNA were standardized as KPCS-GW, KPCS-ICU, KPCS-NICU. Conclusion: KPCS-1 was a valid instrument to represent diverse nursing conditions precisely and was revised as a 34-item KPCS-GW. The terminologies of the other patient classification systems by KHNA were standardized as KPCS-ICU and KPCS-NICU.
Journal of Korean Academy of Nursing Administration
/
v.7
no.1
/
pp.15-23
/
2001
This study was a methodological research to develop computerized patient classification system. The subjects of this investigation were 435 inpatients except redundant data and outliers in P University Hospital from January 18, 2000 to January 24, 2000. The data was analyzed by discrimination analysis and adopted discriminant variables were 1) sum of frequency for the nursing activities, 2) the number of nursing activities that do not need to consider intensity of the activities, and 3) total hours of nursing activities that need to consider their intensities. Discriminant function developed by this study classified the patients into 4 groups; class I, 251 ; class II, 125 ; class III, 39 ; class IV, 20. The Hit ratio was 89.23. Based on this study, following suggestions can be made for the future research 1. Inclusive patient classification system, which includes more expanded direct nursing care factors, need to be developed and examined. 2. This developed classification system can be utilized to evaluate patient distribution and to estimate adequate numbers of nursing staffs in each nursing unit.
Back ground: Nurses now occupy one third of all hospital human resources. Therefore, efficient management of nursing manpower is getting more important. While it is very clear that nursing workload requirement analysis and patient severity classification should be done first for the efficient allocation of nursing workforce, these processes have been conducted manually with ad hoc rule. Purposes: This study was tried to make a predict model for patient classification according to nursing need. We tried to find the easier and faster method to classify nursing patients that can help efficient management of nursing manpower. Methods: The nursing patient classifications data of the hospitalized cancer patients in one of the biggest cancer center in Korea during 2003.1.1-2003.12.31 were assessed by trained nurses. This study developed a prediction model and analyzing nursing needs by data mining techniques. Patients were classified by three different data mining techniques, (Logistic regression, Decision tree and Neural network) and the results were assessed. Results: The data set was created using 165,073 records of 2,228 patients classification database. Main explaining variables were as follows in 3 different data mining techniques. 1) Logistic regression : age, month and section. 2) Decision tree : section, month, age and tumor. 3) Neural network : section, diagnosis, age, sex, metastasis, hospital days and month. Among these three techniques, neural network showed the best prediction power in ROC curve verification. As the result of the patient classification prediction model developed by neural network based on nurse needs, the prediction accuracy was 84.06%. Conclusion: The patient classification prediction model was developed and tested in this study using real patients data. The result can be employed for more accurate calculation of required nursing staff and effective use of labor force.
This study is about major symptoms of elderly and medical services for elderly in long-tenn care facilities. The subject of this study was 298 patients over 00 years old staying in two geriatric hospitals and two nursing homes. The symptoms and medical services were level of patient classification from RUG(Resource Utilization Group)-III which is applied for both Medicare and Medicaid for skilled nursing facilities reimbursement system in US and designed for measuring patient characteristics and medical staff time. This classification is explained by each patient resource(staff time) utilization level which is called CMI(Case-Mix Index). In this study, the symptoms and services were compared by facility type and they were categorized by level and compared by CMI. Major findings are as follows; 1. There were more elderly who have cognitive function problems in nursing homes than patients in geriatric hospitals. There were more patients with behavioral problems in geriatric hospitals than residents in nursing homes. These results were both statistically significant. 2. The patients in geriatric hospitals received significantly more nursing rehabilitation services, rehabilitation services and extensive services than residents in nursing homes. Other hands, special care services were provided significantly more to residents in nursing homes than elderly in geriatric hospitals. 3. ADL and depression variables had higher CMI when the symptoms were heavier condition. The CMI were not matched with levels of cognitive function problems and behavioral problems. 4. The CMI matched well significantly with levels of nursing rehabilitation services, special care services, and clinically complex services provided for the patient in geriatric hospitals and only nursing rehabilitation services in nursing homes. The CMI for rehabilitation services level and extensive services had regular trends. From the result of this study, the resource utilization level and services provided for elderly in each long-term care facilities were figured out. For the further study, it needs to have more concern about RUG-ill which classification variables were just analyzed.
Background: Rehabilitations in subacute phase are different from acute treatments regarding the characteristics and required resource consumption of the treatments. Lack of accuracy and validity of the Korean Diagnosis Related Group and Korean Out-Patient Group for the acute patients as the case-mix and payment tool for rehabilitation inpatients have been problematic issues. The objective of the study was to develop the Korean Rehabilitation Patient Group (KRPG) reflecting the characteristics of rehabilitation inpatients. Methods: As a retrospective medical record survey regarding rehabilitation inpatients, 4,207 episodes were collected through 42 hospitals. Considering the opinions of clinical experts and the decision-tree analysis, the variables for the KRPG system demonstrating the characteristics of rehabilitation inpatients were derived, and the splitting standards of the relevant variables were also set. Using the derived variables, we have drawn the rehabilitation inpatient classification model reflecting the clinical situation of Korea. The performance evaluation was conducted on the KRPG system. Results: The KRPG was targeted at the inpatients with brain or spinal cord injury. The etiologic disease, functional status (cognitive function, activity of daily living, muscle strength, spasticity, level and grade of spinal cord injury), and the patient's age were the variables in the rehabilitation patients. The algorithm of KRPG system after applying the derived variables and total 204 rehabilitation patient groups were developed. The KRPG explained 11.8% of variance in charge for rehabilitation inpatients. It also explained 13.8% of variance in length of stay for them. Conclusion: The KRPG version 1.0 reflecting the clinical characteristics of rehabilitation inpatients was classified as 204 groups.
The objective of the study is to explore the relationships between the variables of nursing productivity on the framework of system del in the tertiary university based care hospital in Korea. Productivity is basically defined as the relation-ship between inputs and outputs. Under the proposition that the nursing unit is a system that produces nursing care output using personal and material resources through the nursing intervention and nursing care management. And this major conception of nursing productivity system comproises input, process and output and feed-back. These categorized variables are essential parts to produce desirable and meaningful out-put. While nursing personnel from head nurse to staff nurses cooperate with each other, the head nurse directs her subordinates to achieve the goal of nursing care unit. In this procedure, the head nurse uses the leadership of authority and benevolence. Meantime nursing productivity will be greatly influenced by environment and surrounding organizational structures, and by also the operational objectives, the policy and standards of procedures. For the study of nursing productivity one sample hospital with 15 general nursing care units was selected. Research data were collected for 3 weeks from May 31 to June 20 in 1993. Input variables were measured in terms of both the served and the server. And patient classification scores were measured drily by degree of nursing care needs that indicated patent case-mix. And also nurses' educational period for profession and clinical experience and the score of nurses' personality were measured as producer input variables by the questionnaires. The process varialbes act necessarily on leading input resources and result in desirable nursing outputs. Thus the head nurse's leadership perceived by her followers is defined as process variable. The output variables were defined as length of stay, average nursing care hours per patient a day the score of quality of nursing care, the score of patient satisfaction, the score of nurse's job satis-faction. The nursing unit was the basis of analysis, and various statistical analyses were used : Reliability analysis(Cronbach's alpha) for 5 measurement tools and Pearson-correlation analysis, multiple regression analysis, and canonical correlation analysis for the test of the relationship among the variables. The results were as follows : 1. Significant positive relationship between the score of patient classification and length of stay was found(r=.6095, p.008). 2. Regression coefficient between the score of patient classification and length of stay was significant (β=.6245, p=.0128), and variance explained was 39%. 3. Significant positive relationship between nurses’ educational period and length of stay was found(r=-.4546, p=.044). 5. Regression coefficient between nurses' educational period and the score of quality of nursing care was significant (β=.5600, p=.029), and variance explained was 31.4%. 6. Significant positive relationship between the score of head nurse's leadership of authoritic characteristics and the length of stay was found (r=.5869, p=.011). 7. Significant negative relationship between the score of head nurse's leadership of benevolent characteristics and average nursing care hours was found(r=-.4578, p=.043). 8. Regression coefficient between the score of head nurse's leadership of benevolent characteristics and average nursing care hours was significant(β=-.6912, p=.0043), variance explained was 47.8%. 9. Significant positive relationship between the score of the head nurse's leadership of benevolent characteristics and the score of nurses' job satis-faction was found(r=.4499, p=050). 10. A significant canonical correlation was found between the group of the independent variables consisted of the score of the nurses' personality, the score of the head nurse's leadership of authoritic characteristics and the group of the dependent variables consisted of the length of stay, average nursing care hours(Rc²=.4771, p=.041). Through these results, the assumed relationships between input variables, process variable, output variables were partly supported. In addition it is also considered necessary that-further study on the relationships between nurses' personality and nurses' educational period, between nurses' clinical experience including skill level and output variables in many research samples should be made.
Journal of The Korea Institute of Healthcare Architecture
/
v.28
no.2
/
pp.7-16
/
2022
Purpose: This study aimed to present an analysis model evaluating evacuation performance considering patient types and procedural evacuation in the medical facility. The user group of the medical facility, including users challenged in evacuation behavior, entails the risk of many casualties. Therefore, it is necessary to plan an evacuation procedure that considers the evacuation characteristics of users. Methods: Through the review of precedent studies, the evacuation procedure of the medical facility, the classification of patient types, and the evacuation procedure was set as conditions and variables for the analysis. The result caused by a variety of conditions and variables were explored. Results: 1) The total evacuation completion time and congestion time were shortened at the procedural evacuation. Moreover, it derived many users from evacuating at the initial phase. 2) The proposed model can provide a basis for proposing a space planning direction that considers the possibility of not carrying out the evacuation plan. 3) It supports safe evacuation by identifying variables that reduce overcrowding by comparing the congestion time of overcrowded spaces. 4) The analysis model can identify the overcrowded space through the evacuation route and suggest the basis for architectural improvements that reduce overcrowding. Implications: The study results can be used to analyze the performance of evacuation procedures and support the establishment of evacuation procedures and building plans for safe evacuation for medical facilities.
Classification in biomedical applications is an important task that predicts or classifies an outcome based on a given set of input variables such as diagnostic tests or the symptoms of a patient. Traditionally the classification algorithms would have to digest a stationary set of historical data in order to train up a decision-tree model and the learned model could then be used for testing new samples. However, a new breed of classification called stream-based classification can handle continuous data streams, which are ever evolving, unbound, and unstructured, for instance--biosignal live feeds. These emerging algorithms can potentially be used for real-time classification over biosignal data streams like EEG and ECG, etc. This paper presents a pioneer effort that studies the feasibility of classification algorithms for analyzing biosignals in the forms of infinite data streams. First, a performance comparison is made between traditional and stream-based classification. The results show that accuracy declines intermittently for traditional classification due to the requirement of model re-learning as new data arrives. Second, we show by a simulation that biosignal data streams can be processed with a satisfactory level of performance in terms of accuracy, memory requirement, and speed, by using a collection of stream-mining algorithms called Optimized Very Fast Decision Trees. The algorithms can effectively serve as a corner-stone technology for real-time classification in future biomedical applications.
Changing concepts of health care, are stimulating the demand for health care, thereby orienting society to health care rights to such an extent that they are deemed as fundamental ones inalienable to man. Concomitantly, qualitative as well as quantative improvement is being sought in the nursing service field. Today, efforts are being made in various areas, especially to qualitatively improve nursing services. A second issue concerns proper staffing. It is important to study staffing, in as much as it continues to be the most persistent and critical problem facing hospital nursing administrators today. It involves quantity, quality, and utilization of nursing personnel. A great deal of attention has been focused on this problem since mid 1930's when nursing services began to be felt as an important segment of hospital operation representing the largest single item of hospital budgets. Traditionally, the determination and allocation of nursing personnel resources has relied heavily on gloval approaches which make use of fixed staff-to-patient ratios. It has long been recognized that these ratios are insensitive to variations between institutions and among individual patients. Therefore, the aim of this thesis is to point to the urgent need for the development of methodology and criteria suited to the reality of Korea. The present research selected one place, the W Christian Hospital, and was conducted over a period 10 days from January, and nurses who were them on duty in their unit. The total num-her of patients surveyed was 1,426 and that of 354. The research represents many variables affecting the direct patient care time using the result from the direct observation method, then using a calculation method to estimate the relationship between the patients care time and selected variables in the hospital setting. The amount of direct patient care time varies with many factors, such 89 the patients age. diagnosis and time in hospital. Differences are also found from hospital, clinic to clinic, ward to ward, and even shift to shift. In this research, the calculation method of estimating the required member of nursing staff is obtained by dividing the time of productive patient care activity(with the time of patient care observed), by the sum of the productive time that each the staff can supply, i.e., 360 minutes, which is obtained by deducting the time for personal activities. The results indicate a substantial difference between the time of productive patient care observed directing and the time of the productive patient care estimated using calculating method. If we know accurately the time of the direct patient care on a shift, there required number of staff members calculated if the proper method can be determinded should be able the time of the direct patient care be estimated by the patient classification system, but this research has shown this system to be in accurate in Korea. There are differences in the recommended time of productive patient care and the required number of nursing staff depending upon which method is used. The calculated result is not very accurate, so more research is needed on the patient classification system.
Purpose: In this research multi-level analysis was done to identify factors related to quality of services. Patient characteristics and organizational factors were considered. Methods: The data were collected from the Health Insurance Review and Assessment Service(HIRA) data base. The sample was selected from 17,234 patients who had been admitted between January 2007 and May 2008 to one of 253 long-term care hospitals located in Seoul, six other metropolitan cities or nine provinces The data were analyzed with SAS 9.1 using multi-level analysis. Results: The results indicated that individual level variables related to quality of service were age, cognitive ability, patient classification, and initial quality scores. The organizational level variables related to quality of service were ownership, number of beds, and turnover rate. The explanatory power of variables related to organizational level variances in quality of service was 23.72%. Conclusion: The results of this study indicate that differences in the quality of services were related to organizational factors. It is necessary to consider not only individual factors but also higher-level organizational factors such as nurse' welfare and facility standards if quality of service in long term care hospitals is to be improved.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.