• Title/Summary/Keyword: pathovar

Search Result 19, Processing Time 0.021 seconds

Screening the Antibacterial Activities of Streptomyces Extracts against Phytopathogens Xanthomonas oryzae pathovar oryzae, Xanthomonas campestris pathovar vesicatoria, and Pectobacterium carotovorum pathovar carotovorum

  • Kim, Seung-Hwan;Cheng, Jinhua;Yang, Seung Hwan;Suh, Joo-Won;Song, Eun-Sung;Kang, Lin-Woo;Kim, Jeong-Gu
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.3
    • /
    • pp.253-258
    • /
    • 2015
  • Xanthomonas oryzae pv. oryzae (Xoo), X. campestris pv. vesicatoria (Xcv), and Pectobacterium carotovorum pv. carotovorum (Pcc) are the causative agents of bacterial blight in rice, bacterial spot in pepper, and bacterial soft rot in carrot and cabbage, respectively. To isolate novel microbial extracts with antimicrobial activities against these bacteria, approximately 5,300 different Streptomyces extracts were prepared and tested. Microbial cultures from various Streptomyces strains isolated from the Jeju Island, Baekam, Mankyoung river, Jiri mountain etc. in Korea were extracted into three different factions -secreted hydrophobic, secreted hydrophilic, and mycelia- using ethyl acetate, water, and methanol. Initially, 34, 29, and 10 extracts were selected as having antibacterial activities against Xoo, Xcv, and Pcc, respectively. Extracts 1169G4, 1172E9, and 1172E10 had the highest growth inhibition activities against both Xoo and Xcv, and extracts 1151H7 and 1152H7 showed the highest growth inhibition activities against Pcc.

Sensitive and Pathovar-Specific Detection of Xanthormonas campestris pv. glycines by DNA Hybridization and Polymerase Chain Reaction Analysis

  • Changsik Oh;Sunggi Heu;Park, Yong-Chul
    • The Plant Pathology Journal
    • /
    • v.15 no.1
    • /
    • pp.57-61
    • /
    • 1999
  • Xanthomonas campestris pv. glycines causes bacterial pustule disease on susceptible soybean leaves and produces a bacteriocin, named glycinecinA, against most xanthomonads including Xanthomonas campestris pv. vesicatoria. One of the 5 isolated DNA regions responsible for bacteriocin production, a 1.7 kb DNA region for the glycinecinA gene, was used as a probe to detect the presence of the homolog DNA in other bacterial strains. Among 55 bacterial strains tested, only X. campestris pv. glycines showed the positive signal with glycinecinA DNA. Two oligomers, heu2 and heu4, derived from a glycinecinA DNA were used to carry out the polymerase chain reaction (PCR) analysis with chromosomal DNA from 55 different bacterial strains including 24 different strains of X. campestris pv. glycines, 9 different pathovars of xanthomonads, and other 22 bacterial strains of different genus and species. By separation of the PCR products on agarose gel, a 0.86 kb DNA fragment was specifically detected when X. campestris pv. glycines was present in the amplification assay. The 0.86 kb fragment was not amplified when DNA from other bacteria was used for the assay. Southern analysis with glycinecinA DNA showed that the PCR signal was obtained with X. campestris pv. glycines isolates from various geographic regions and soybean cultivars. Therefore, the 1.7 kb DNA region for the glycinecinA gene can be used for the pathovar-specific probe for the DNA hybridization and the primers heu2 and heu4 can be used for the pathovar-specific primers for the PCR analysis to detect X. campestris pv. glycines.

  • PDF

Specific Detection of Xanthomonas oryzae pv. oryzicola in Infected Rice Plant by Use of PCR Assay Targeting a Membrane Fusion Protein Gene

  • Kang, Man-Jung;Shim, Jae-Kyung;Cho, Min-Seok;Seol, Young-Joo;Hahn, Jang-Ho;Hwang, Duk-Ju;Park, Dong-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1492-1495
    • /
    • 2008
  • Successful control of Xanthomonas oryzae pv. oryzicola, the causal agent of bacterial leaf streak, requires a specific and reliable diagnostic tool. A pathovar-specific PCR assay was developed for the rapid and accurate detection ofthe plant pathogenic bacterium Xanthomonas oryzae pv. oryzicola in diseased plant. Based on differences in a membrane fusion protein gene of Xanthomonas oryzae pv. oryzicola and other microorganisms, which was generated from NCBI (http://www.ncbi.nlm.nih.gov/) and CMR (http://cmr.tigr.org/) BLAST searches, one pair of pathovar-specific primers, XOCMF/XOCMR, was synthesized. Primers XOCMF and XOCMR from a membrane fusion protein gene were used to amplity a 488-bp DNA fragment. The PCR product was only produced from 4 isolates of Xanthomonas oryzae pv. oryzicola among 37 isolates of other pathovars and species of Xanthomonas, Pectobacterium, Pseudomonas, Burkholderia, Escherichia coli, and Fusarium oxysporum f.sp. dianthi. The results suggested that the assay detected the pathogen more rapidly and accurately than standard isolation methods.

Genetic Differentiation of Pseudomonas syringae Pathovar tomato from Other P. syringae Pathovars using REP-PCR and URP-PCR

  • Cho, Min-Seok;Park, Dong-Suk;Yun, Yeo-Hong;Kim, Seong-Hwan;Shim, Myung-Yong;Choi, Chang-Won;Kim, Young-Shick
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.60-67
    • /
    • 2012
  • For the genetic differentiation of $Pseudomonas$ $syringae$ pathovar $tomato$, a total of 51 $P.$ $syringae$ pv. strains infecting 33 different host plants were analyzed using repetitive element PCR(REP-PCR) and universal rice primer PCR(URP-PCR). The entire DNA fingerprint profiles were analyzed using unweighted pair-group method with arithmetic averages (UPGMA). The 51 $P.$ $syringae$ pv. strains could be divided into five clusters based on 65% similarity by Rep-PCR using BOX, ERIC, and REP primers. $P.$ $syringae$ pv. $tomato$ cluster was well separated from other 31 $P.$ $syringae$ pathovars. $P.$ $syringae$ pv. $tomato$ cluster included only $P.$ $syringae$ pv. $maculicola$ and $P.$ $syringae$ pv. $tomato$. $P.$ $syringae$ pv. $tomato$ strains could be divided into two genetic groups. Meanwhile, the Pseudomonas pv. strains could be divided into four clusters based on 63% similarity by URP-PCR using 2F, 9F, and 17R primers. $P.$ $syringae$ pv. $tomato$ cluster was also well separated from 30 other $P.$ $syringae$ pathovars. In this case, $P.$ $syringae$ pv. $tomato$ cluster included $P.$ $syringae$ pv. $maculicola$, $P.$ $syringae$ pv. $berberidi$, and $P.$ $syringae$ pv. $tomato$. $P.$ $syringae$ pv. $tomato$ strains was also separated into two genetic groups by URP-PCR analysis. Overall, our work revealed that $P.$ $syringae$ pv. $tomato$ can be genetically differentiated from other $P.$ $syringae$ pathovars by the DNA fingerprint profiles of REP-PCR and URP-PCR. We first report that there are two genetically diverged groups in $P.$ $syringae$ pv. $tomato$ strains.

Genomic Analysis of the Carrot Bacterial Blight Pathogen Xanthomonas hortorum pv. carotae in Korea

  • Mi-Hyun Lee;Sung-Jun Hong;Dong Suk Park;Hyeonheui Ham;Hyun Gi Kong
    • The Plant Pathology Journal
    • /
    • v.39 no.4
    • /
    • pp.409-416
    • /
    • 2023
  • Bacterial leaf blight of carrots caused by Xanthomonas hortorum pv. carotae (Xhc) is an important worldwide seed-borne disease. In 2012 and 2013, symptoms similar to bacterial leaf blight were found in carrot farms in Jeju Island, Korea. The phenotypic characteristics of the Korean isolation strains were similar to the type strain of Xhc. Pathogenicity showed symptoms on the 14th day after inoculation on carrot plants. Identification by genetic method was multi-position sequencing of the isolated strain JJ2001 was performed using four genes (danK, gyrB, fyuA, and rpoD). The isolated strain was confirmed to be most similar to Xhc M081. Furthermore, in order to analyze the genetic characteristics of the isolated strain, whole genome analysis was performed through the next-generation sequencing method. The draft genome size of JJ2001 is 5,443,372 bp, which contains 63.57% of G + C and has 4,547 open reading frames. Specifically, the classification of pathovar can be confirmed to be similar to that of the host lineage. Plant pathogenic factors and determinants of the majority of the secretion system are conserved in strain JJ2001. This genetic information enables detailed comparative analysis in the pathovar stage of pathogenic bacteria. Furthermore, these findings provide basic data for the distribution and diagnosis of Xanthomonas hortorum pv. carotae, a major plant pathogen that infects carrots in Korea.