• Title/Summary/Keyword: pathogenesis-related protein5

Search Result 65, Processing Time 0.021 seconds

Isolation and Characterization of Pathogenesis-Related Protein 5 (PgPR5) Gene from Panax ginseng

  • Kim, Yu-Jin;Lee, Jung-Hye;Jung, Dae-Young;Sathiyaraj, Gayathri;Shim, Ju-Sun;In, Jun-Gyo;Yang, Deok-Chun
    • The Plant Pathology Journal
    • /
    • v.25 no.4
    • /
    • pp.400-407
    • /
    • 2009
  • A pathogenesis-related protein (PgPR5) gene that isolated from the leaf of Panax ginseng was characterized. The ORF is 756 bp with a deduced amino acid sequence of 251 residues. The calculated molecular mass of the matured protein is approximately 27.5 kDa with a predicated isoelectric point of 7.80. A GenBank BlastX search revealed that the deduced amino acid of PgPR5 shares highest sequence similarity to PR5 of Actinidia deliciosa (80% identity, 87% similarity). PgPR5 has a C-terminal and N-terminal signal peptide, suggesting that it is a vacuolar secreted protein. The expression of PgPR5 under various environmental stresses was analyzed at different time points using real-time PCR. Our results reveal that PgPR5 is induced by salt stress, chilling stress, heavy metal, UV, and pathogen infection. These results suggest that the PgPR5 could play a role in the molecular defence response of ginseng to abiotic and pathogen attack. This is the first report of the isolation of PR5 gene from the P. ginseng.

Molecular discrimination of Panax ginseng cultivar K-1 using pathogenesis-related protein 5 gene

  • Wang, Hongtao;Xu, Fengjiao;Wang, Xinqi;Kwon, Woo-Saeng;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.482-487
    • /
    • 2019
  • Background: The mixed-cultivation of different Panax ginseng cultivars can cause adverse effects on stability of yield and quality. K-1 is a superior cultivar with good root shape and stronger disease resistance. DNA markers mined from functional genes are clearly desirable for K-1, as they may associate with major traits and can be used for marker-assisted selection to maintain the high quality of Korean ginseng. Methods: Five genes encoding pathogenesis-related (PR) proteins of P. ginseng were amplified and compared for polymorphism mining. Primary, secondary, and tertiary structures of PR5 protein were analyzed by ExPASy-ProtParam, PSSpred, and I-TASSER methods, respectively. A coding single nucleotide polymorphism (SNP)-based specific primer was designed for K-1 by introducing a destabilizing mismatch within the 3' end. Allele-specific polymerase chain reaction (PCR) and real-time allele-specific PCR assays were conducted for molecular discrimination of K-1 from other cultivars and landraces. Results: A coding SNP leading to the modification of amino acid residue from aspartic acid to asparagine was exploited in PR5 gene of K-1 cultivar. Bioinformatics analysis showed that the modification of amino acid residue changed the secondary and tertiary structures of the PR5 protein. Primer KSR was designed for specific discrimination of K-1 from other ginseng cultivars and landraces. The developed real-time allele-specific PCR assay enabled easier automation and accurate genotyping of K-1 from a large number of ginseng samples. Conclusion: The SNP marker and the developed real-time allele-specific PCR assay will be useful not only for marker-assisted selection of K-1 cultivar but also for quality control in breeding and seed programs of P. ginseng.

Differential Induction of Pathogenesis-Related Proteins in the Compatible and Incompatible Interactions of Tomato Leaves with Xanthomonas campestris pv. vesicatoria (Xanthomonas campestris pv. vesicatoria와 토마토잎의 친화적, 불친화적 반응에서 병생성관련 단백질의 유도)

  • 김정동;황병국
    • Korean Journal Plant Pathology
    • /
    • v.11 no.1
    • /
    • pp.53-60
    • /
    • 1995
  • Inoculation with the compatible strain Ds 1 of Xanthomonas campestris pv. vesicatoria caused brownish ad water-soaked lesions, but incompatible strain Bv5-4a produced hypersensitive symptoms with local necrosis on tomato (cv. Kwangyang) leaves. Bacterial populations of the compatible strains Ds 1 propagated more greatly than the incompatible strain Bv5-4a at the frist onset, but no differences were observed 5 days after inoculation. The bacterial infection induced the synthesis and accumulation of soluble proteins in tomato leaves, especially in the incompatible interaction. Native-polyacrylamide gel electrophoresis distinguished the soluble proteins in the tomato leaves infected by the compatible or incompatible strains. A protein of low molecular weight occurred only in the incompatible interaction. Some pathogenesis-related (PR) proteins, especially the 15, 18, 23, 26 and 54 kDa proteins, were detected only in the infected tomato leaves. In the two-dimensional electrophoresis, some proteins with different molecular weights (Mr. 21∼29 kDa) and the pI 8∼9 appeared more distinctly only in the incompatible interaction. These data suggest that the de novo synthesis of some PR proteins in tomato may be significant in defense against X. c. pv. vesicatoria.

  • PDF

Scopoletin Production Related to Induced Resistance of Tobacco Plants Against Tobacco mosaic virus

  • Kim, Young-Ho;Choi, Do-Il;Yeo, Woon-Hyung;Kim, Young-Sook;Chae, Soon-Yong;Park, Eun-Kyung;Kim, Sang-Seock
    • The Plant Pathology Journal
    • /
    • v.16 no.5
    • /
    • pp.264-268
    • /
    • 2000
  • A fluorescent material was accumulated in inoculated leaves showing necrotic local lesions of tobacco plants with N gene, Nicotiana tabacum cvs. Xanthi-nc NN, Samsun NN, Burley 21 and KF 114, and N. glutinosa, and Datura stramonium at the early growth stages by the inoculation of Tobacco mosaic virus (TMV). It was identified as a coumarin phytoalexin, scopoletin. Although the material was most prominently produced in TMV-inoculated tobacco leaves with local necrotic lesions, its accumulation was also noted in uninoculated leaves of TMV-inoculated plants. Its accumulation was somewhat greater in high resistance-induced leaves than low resistance-induced and intact leaves. Scopoletin treatment induced the expression of a pathogenesis-related protein, PR-1, prominently at the concentration of 500 or 1000 ${\mu}$g/ml. This suggests that scopoletin is a phytoalexin abundantly accumulating in N gene-containing resistant plants in response to TMV infection, and may be related to hypersensitive responses (HR) and systemic acquired resistance (SAR) in the resistant tobacco plants.

  • PDF

Construction of a High-Quality Yeast Two-Hybrid Library and Its Application in Identification of Interacting Proteins with Brn1 in Curvularia lunata

  • Gao, Jin-Xin;Jing, Jing;Yu, Chuan-Jin;Chen, Jie
    • The Plant Pathology Journal
    • /
    • v.31 no.2
    • /
    • pp.108-114
    • /
    • 2015
  • Curvularia lunata is an important maize foliar fungal pathogen that distributes widely in maize growing area in China, and several key pathogenic factors have been isolated. An yeast two-hybrid (Y2H) library is a very useful platform to further unravel novel pathogenic factors in C. lunata. To construct a high-quality full length-expression cDNA library from the C. lunata for application to pathogenesis-related protein-protein interaction screening, total RNA was extracted. The SMART (Switching Mechanism At 5' end of the RNA Transcript) technique was used for cDNA synthesis. Double-stranded cDNA was ligated into the pGADT7-Rec vector with Herring Testes Carrier DNA using homologous recombination method. The ligation mixture was transformed into competent yeast AH109 cells to construct the primary cDNA library. Eventually, a high qualitative library was successfully established according to an evaluation on quality. The transformation efficiency was about $6.39{\times}10^5$ transformants/$3{\mu}g$ pGADT7-Rec. The titer of the primary cDNA library was $2.5{\times}10^8cfu/mL$. The numbers for the cDNA library was $2.46{\times}10^5$. Randomly picked clones show that the recombination rate was 88.24%. Gel electrophoresis results indicated that the fragments ranged from 0.4 kb to 3.0 kb. Melanin synthesis protein Brn1 (1,3,8-hydroxynaphthalene reductase) was used as a "bait" to test the sufficiency of the Y2H library. As a result, a cDNA clone encoding VelB protein that was known to be involved in the regulation of diverse cellular processes, including control of secondary metabolism containing melanin and toxin production in many filamentous fungi was identified. Further study on the exact role of the VelB gene is underway.

Identification of Hub Genes in the Pathogenesis of Ischemic Stroke Based on Bioinformatics Analysis

  • Yang, Xitong;Yan, Shanquan;Wang, Pengyu;Wang, Guangming
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.5
    • /
    • pp.697-709
    • /
    • 2022
  • Objective : The present study aimed to identify the function of ischemic stroke (IS) patients' peripheral blood and its role in IS, explore the pathogenesis, and provide direction for clinical research progress by comprehensive bioinformatics analysis. Methods : Two datasets, including GSE58294 and GSE22255, were downloaded from Gene Expression Omnibus database. GEO2R was utilized to obtain differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs were performed using the database annotation, visualization and integrated discovery database. The protein-protein interaction (PPI) network of DEGs was constructed by search tool of searching interactive gene and visualized by Cytoscape software, and then the Hub gene was identified by degree analysis. The microRNA (miRNA) and miRNA target genes closely related to the onset of stroke were obtained through the miRNA gene regulatory network. Results : In total, 36 DEGs, containing 27 up-regulated and nine down-regulated DEGs, were identified. GO functional analysis showed that these DEGs were involved in regulation of apoptotic process, cytoplasm, protein binding and other biological processes. KEGG enrichment analysis showed that these DEGs mediated signaling pathways, including human T-cell lymphotropic virus (HTLV)-I infection and microRNAs in cancer. The results of PPI network and cytohubba showed that there was a relationship between DEGs, and five hub genes related to stroke were obtained : SOCS3, KRAS, PTGS2, EGR1, and DUSP1. Combined with the visualization of DEG-miRNAs, hsa-mir-16-5p, hsa-mir-181a-5p and hsa-mir-124-3p were predicted to be the key miRNAs in stroke, and three miRNAs were related to hub gene. Conclusion : Thirty-six DEGs, five Hub genes, and three miRNA were obtained from bioinformatics analysis of IS microarray data, which might provide potential targets for diagnosis and treatment of IS.

An Acidic PATHOGENESIS-RELATED1 Gene of Oryza grandiglumis is Involved in Disease Resistance Response Against Bacterial Infection

  • Shin, Sang Hyun;Pak, Jung-Hun;Kim, Mi Jin;Kim, Hye Jeong;Oh, Ju Sung;Choi, Hong Kyu;Jung, Ho Won;Chung, Young Soo
    • The Plant Pathology Journal
    • /
    • v.30 no.2
    • /
    • pp.208-214
    • /
    • 2014
  • Wild rice, Oryza grandiglumis shows hyper-resistance response to pathogen infection. In order to identify genes necessary for defense response in plants, we have carried out a subtractive hybridization coupled with a cDNA macroarray. An acidic PATHOGENESIS-RELATED1 (PR1) gene of the wild rice is highly identical to the acidic PR1 genes of different plant species. The OgPR1a cDNA has an apparent single open reading frame with a predicted molecular mass 40,621 Da and an isoelectic point of 5.14. Both in silico analysis and a transient expression assay in onion epidermal cells revealed that the OgPR1a protein could be localized in intercellular space in plants. The OgPR1a mRNA was strongly transcribed by the exogenous treatment with ethylene and jasmonic acid as well as protein phosphatase inhibitors. Additionally, ectopic expression of the OgPR1a conferred disease resistance on Arabidopsis to the bacterial and fungal infections.

Development of a Screening System for Plant Defense-Inducing Agent using Transgenic Tobacco Plant with PR-1a Promoter and GUS Gene

  • Oh, Sang-Keun;Lee, Seon-Woo;Kwon, Suk-Yoon;Choi, Do-Il
    • The Plant Pathology Journal
    • /
    • v.21 no.3
    • /
    • pp.288-292
    • /
    • 2005
  • Pathogenesis-related protein-1a (PR-1a) is strongly induced in tobacco plants by pathogen attack, exogenous salicylic acid (SA) application and by other developmental processes. In order to develop a rapid screening system for the selection of plant defense-inducing compounds originated from various sources, we have transformed tobacco Samsun NN plants with a chimeric construct consisting of GUS $(\beta-glucuronidase)$. In the $T_1$ generation, three transgenic lines having stable GUS expression were selected for further promoter analysis. Using GUS histochemical assay, we observed strong GUS induction driven by PR-1a promoter in PR1a-GUS transgenic tobacco leaves in response to the exogenous application of SA or benzol (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester (BTH), a SA­derivative compound. In addition, GUS expression was maintained locally or systemically in PR1a-GUS transgenic line $\#5\;T_2$ generation) until after 3 days when they were treated with same chemicals. Our results suggested that the PR1a-GUS reporter gene system in tobacco plants may be applicable for the large-scale screening of defense-inducing substances.

Identification of Differentially Displayed Genes of a Pseudomonas Resistant Soybean (Glycine max)

  • Kang, Sang-Gu;Cha, Hyeon-Wook;Chang, Moo-Dng;Park, Eui-Ho
    • The Plant Pathology Journal
    • /
    • v.19 no.5
    • /
    • pp.239-247
    • /
    • 2003
  • In Korea, a local soybean (Glycine max) genotype 56l. was found to be strongly resistant to a virulent bacterial strain of a Pseudomonas sp. SN239. Specific genes involved in the resistance of the soybean genotype 561 were identified and the pattern of gene expression against the Pseudomonas infection was analyzed using differential-display reverse transcription PCR (DDRT-PCR). More than 126 cDNA fragments representing mRNAs were induced within 48 hours of bacteria inoculation. Among them, 28 cDNA fragments were cloned and sequenced. Twelve differentially displayed clones with open reading frames had unknown functions. Sixteen selected cDNA clones were homologous to known genes of other organisms. Some of the identified cDNAs were pathogenesis-related (PR) genes and PR-like genes. These cDNAs included a putative calmodulin-binding protein; an endo-l,3-1,4-$\bate$-D-glucanase; a $\bate$-1,3-endoglucanase; a $\bate$-1,3-exoglucanase; a phytochelatin synthetase-like gene; a thiol protease; a cycloartenol synthase; and a putative receptor-like serine/threonine protein kinase. Among them, four genes were found to be putative PR genes induced significantly by the Pseudomonas infection. These included a calmodulin-binding protein gene, a $\bate$-1,3-endoglucanase gene, a receptor-like serine/threonine protein kinase gene, and pS321 (unknown function). These results suggest that the differentially expressed genes may mediate the strong resistance of soybean 561 to the strain SN239 of Pseudomonas sp.

Swedish mutation within amyloid precursor protein modulates global gene expression towards the pathogenesis of Alzheimer's disease

  • Shin, Jong-Yeon;Yu, Saet-Byeol;Yu, Un-Young;Ahnjo, Sang-Mee;Ahn, Jung-Hyuck
    • BMB Reports
    • /
    • v.43 no.10
    • /
    • pp.704-709
    • /
    • 2010
  • The Swedish mutation (K595N/M596L) of amyloid precursor protein (APP-swe) has been known to increase abnormal cleavage of cellular APP by Beta-secretase (BACE), which causes tau protein hyperphosphorylation and early-onset Alzheimer's disease (AD). Here, we analyzed the effect of APP-swe in global gene expression using deep transcriptome sequencing technique. We found 283 genes were down-regulated and 348 genes were up-regulated in APP-swe expressing H4-swe cells compared to H4 wild-type cells from a total of approximately 74 million reads of 38 base pairs from each transcriptome. Two independent mechanisms such as kinase and phosphatase signaling cascades leading hyperphosphorylation of tau protein were regulated by the expression of APP-swe. Expressions of catalytic subunit as well as several regulatory subunits of protein phosphatases 2A were decreased. In contrast, expressions of tau-phosphorylating glycogen synthase kinase $3\beta$(GSK-3$\beta$), cyclin dependent kinase 5 (CDK5), and cAMP-dependent protein kinase A (PKA) catalytic subunit were increased. Moreover, the expression of AD-related Aquaporin 1 and presenilin 2 expression was regulated by APP-swe. Taken together, we propose that the expression of APP-swe modulates global gene expression directed to AD pathogenesis.