• 제목/요약/키워드: pathogenesis-related protein-1a

검색결과 125건 처리시간 0.027초

구제역의 병리기전 및 진단, 예방백신 개발 (Pathogenesis, Dianosis, and Prophylactic Vaccine Development for Foot-and-Mouth Disease)

  • 문선화;양주성
    • Applied Biological Chemistry
    • /
    • 제48권4호
    • /
    • pp.301-310
    • /
    • 2005
  • 구제역(Foot-and-Mouth Disease: FMD)이란 소, 돼지, 양, 염소 등의 cloven-hoofed 동물에서 나타나는 바이러스성 질병으로 입, 코, 유두, 발굽 등에 수포가 형성되는 것이 특징이다. 일곱 가지 혈청형(O, A, C, Asia1, SAT1, SAT2 and SAT3)으로 분류되는 구제역바이러스(Foot-and-Mouth Disease Virus: FMDV)는 single stranded positive RNA virus로 nonenveloped capsid virus이다. Viral genome은 8.2 Kb로 하나의 ORF인 polyprotein으로 되어있으며, 크게 capsid protein coding region인 P1, replication related protein coding region인 P2, RNA dependent RNA polymerase coding region인 P3로 구성된다. FMDV는 respiratory tract의 pharynx epithelial cell에 감염되며, lung epithelial cell에서 replication을 한다. 구제역바이러스는 감염율은 높지만 낮은 치사율을 가진다. 2002년 한국에서 구제역이 발병하여 많은 경제적 손실을 입었다. FMDV의 감염을 조절할 수 있는 조절방법이 없는 실정이며, 현재 많은 나라에서는 구제역바이러스의 감염을 막을 수 있는 효과적인 방법을 연구하고 있다. 본 보고서에서는 FMD에 대한 보다 효과적인 예방법인 DNA vaccine, edible vaccine, peptide vaccine에 대해 고찰하였다.

Computational approaches for prediction of protein-protein interaction between Foot-and-mouth disease virus and Sus scrofa based on RNA-Seq

  • Park, Tamina;Kang, Myung-gyun;Nah, Jinju;Ryoo, Soyoon;Wee, Sunghwan;Baek, Seung-hwa;Ku, Bokkyung;Oh, Yeonsu;Cho, Ho-seong;Park, Daeui
    • 한국동물위생학회지
    • /
    • 제42권2호
    • /
    • pp.73-83
    • /
    • 2019
  • Foot-and-Mouth Disease (FMD) is a highly contagious trans-boundary viral disease caused by FMD virus, which causes huge economic losses. FMDV infects cloven hoofed (two-toed) mammals such as cattle, sheep, goats, pigs and various wildlife species. To control the FMDV, it is necessary to understand the life cycle and the pathogenesis of FMDV in host. Especially, the protein-protein interaction between FMDV and host will help to understand the survival cycle of viruses in host cell and establish new therapeutic strategies. However, the computational approach for protein-protein interaction between FMDV and pig hosts have not been applied to studies of the onset mechanism of FMDV. In the present work, we have performed the prediction of the pig's proteins which interact with FMDV based on RNA-Seq data, protein sequence, and structure information. After identifying the virus-host interaction, we looked for meaningful pathways and anticipated changes in the host caused by infection with FMDV. A total of 78 proteins of pig were predicted as interacting with FMDV. The 156 interactions include 94 interactions predicted by sequence-based method and the 62 interactions predicted by structure-based method using domain information. The protein interaction network contained integrin as well as STYK1, VTCN1, IDO1, CDH3, SLA-DQB1, FER, and FGFR2 which were related to the up-regulation of inflammation and the down-regulation of cell adhesion and host defense systems such as macrophage and leukocytes. These results provide clues to the knowledge and mechanism of how FMDV affects the host cell.

Oxidative Modification of Neurofilament-L by the Cytochrome c and Hydrogen Peroxide System

  • Kang, Jung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권1호
    • /
    • pp.77-80
    • /
    • 2007
  • As neurofilament proteins are major cytoskeletal components of neuron, abnormality of neurofilament is proposed in brain with neurodegenerative disorders such as Parkinson's disease (PD). Since oxidative stress might play a critical role in altering normal brain proteins, we investigated the oxidative modification of neurofilament-L (NF-L) induced by the reaction of cytochrome c with H2O2. When NF-L was incubated with cytochrome c and H2O2, the protein aggregation was increased in cytochrome c and H2O2 concentrationsdependent manner. Radical scavengers, azide, formate and N-acetyl cysteine, prevented the aggregation of NFL induced by the cytochrome c/H2O2 system. The formations of carbonyl group and dityrosine were obtained in cytochrome c/H2O2-mediated NF-L aggregates. Iron specific chelator, desferoxamine, prevented the cytochrome c/H2O2 system-mediated NF-L aggregation. These results suggest that the cytochrome c/H2O2 system may be related to abnormal aggregation of NF-L which may be involved in the pathogenesis of PD and related disorders.

A proteomic approach to identify of yeast proteins that related with accumulation of misfolded protein in cell

  • Shin, Yong-Seung;Seo, Eun-Joo;Kim, Joon;Yu, Myeong-Hee
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.64-64
    • /
    • 2003
  • In growing number of diseases it has been shown that the aggregation of specific proteins has an important role in the pathogenesis of the disorder. This has been demonstrated in structural detail with the liver cirrhosis of ${\alpha}$$_1$-antitrypsin deficiency, and it is now believed that similar protein aggregation underlies many neurodegenerative disorders such as autosomal dominant Parkinson disease, prion diseases, Alzheimer disease, Huntington disease.

  • PDF

Isolation and Differential Expression of an Acidic PR-1 cDNA Gene from Soybean Hypocotyls Infected with Phtophthora sojae f. sp. glycines

  • Kim, Choong-Seo;Yi, Seung-Youn;Lee, Yeon-Kyung;Hwang, Byung-Kook
    • The Plant Pathology Journal
    • /
    • 제16권1호
    • /
    • pp.9-18
    • /
    • 2000
  • Using differential display techniques, a new acidic pathogenesis-related (PR) protein-1 cDNA (GMPRla) gene was isolated from a cDNA library of soybean (Glycinemax L.Merr, cultivar Jangyup) hypocotyls infected by Phytophthora sojae f. sp. glycines. The 741 bp of fulllength GMPRla clone contains an open reading frame of 525 nucleotides encoding 174 amino acid residues (pI 4.23) with a putative signal peptide of 27 amino acids in the N-terminus. Predicted molecular weight of the protein is 18,767 Da. The deduced amino acid sequence of GMPRla has a high level of identity with PR-1 proteins from Brassica napus, Nicotiana tabacum, and Sambucus nigra. The GMPRla mRNA was more strongly expressed in the incompatible than the compatible interaction. The transcript accumulation was induced in the soybbean hypocotyls by treatment with ethephon or DL-$\beta$-amino-n-butyric acid, but not by wounding. In situ hybridization data showed that GMPRIa mRNAs were usually localized in the vascular bundle of hypocotyl tissues, especially phloem tissue. Differences between compatible and incompatible interactions in the timing of GMPRla mRNA accumulation were remarkable, but the spatial distribution of GMPRla mRNA was similar in both interactions. However, more GMPRla mRNA was accumulated in soybean hypocotyls at 6 and 24 h after inoculation.

  • PDF

Mutation Hotspots in the β-Catenin Gene: Lessons from the Human Cancer Genome Databases

  • Kim, Sewoon;Jeong, Sunjoo
    • Molecules and Cells
    • /
    • 제42권1호
    • /
    • pp.8-16
    • /
    • 2019
  • Mutations in the ${\beta}-catenin$ gene (CTNNB1) have been implicated in the pathogenesis of some cancers. The recent development of cancer genome databases has facilitated comprehensive and focused analyses on the mutation status of cancer-related genes. We have used these databases to analyze the CTNNB1 mutations assembled from different tumor types. High incidences of CTNNB1 mutations were detected in endometrial, liver, and colorectal cancers. This finding agrees with the oncogenic role of aberrantly activated ${\beta}-catenin$ in epithelial cells. Elevated frequencies of missense mutations were found in the exon 3 of CTNNB1, which is responsible for encoding the regulatory amino acids at the N-terminal region of the protein. In the case of metastatic colorectal cancers, in-frame deletions were revealed in the region spanning exon 3. Thus, exon 3 of CTNNB1 can be considered to be a mutation hotspot in these cancers. Since the N-terminal region of the ${\beta}-catenin$ protein forms a flexible structure, many questions arise regarding the structural and functional impacts of hotspot mutations. Clinical identification of hotspot mutations could provide the mechanistic basis for an oncogenic role of mutant ${\beta}-catenin$ proteins in cancer cells. Furthermore, a systematic understanding of tumor-driving hotspot mutations could open new avenues for precision oncology.

Application of genome engineering for treatment of retinal diseases

  • Jo, Dong Hyun;Kim, Jeong Hun
    • BMB Reports
    • /
    • 제51권7호
    • /
    • pp.315-316
    • /
    • 2018
  • Genome engineering with clustered regularly interspaced short palindromic repeats (CRISPR) system can be used as a tool to correct pathological mutations or modulate gene expression levels associated with pathogenesis of human diseases. Owing to well-established local administration methods including intravitreal and subretinal injection, it is relatively easy to administer therapeutic genome engineering machinery to ocular tissues for treating retinal diseases. In this context, we have investigated the potential of in vivo genome engineering as a therapeutic approach in the form of ribonucleoprotein or CRISPR packaged in viral vectors. Major issues in therapeutic application of genome engineering include specificity and efficacy according to types of CRISPR system. In addition to previous platforms based on ribonucleoprotein and CRISPR-associated protein 9 derived from Campylobacter jejuni, we evaluated the therapeutic effects of a CRISPR RNA-guided endonuclease derived from Lachnospiraceae bacterium ND2006 (LbCpf1) in regulating pathological angiogenesis in an animal model of wet-type age-related macular degeneration. LbCpf1 targeting Vegfa or Hif1a effectively disrupted the expression of genes in ocular tissues, resulting in suppression of choroidal neovascularization. It was also notable that there were no significant off-target effects in vivo.

배추 무사마귀병 마커 탐색을 위한 배추 뿌리 단백질체 분석 (Root proteome analysis of Chinese cabbage in response to Plasmodipohora brassicae Woron)

  • 정재윤;임용표;황철호
    • Journal of Plant Biotechnology
    • /
    • 제42권4호
    • /
    • pp.350-355
    • /
    • 2015
  • Clubroot disease is one of the most wide-spread and devastating diseases in the cultivation of Chinese cabbage. To develop a protein marker for resistance to clubroot disease in Chinese cabbage, a comparative proteome analysis was performed between a sensitive line, 94SK, and a resistant line, CR Shinki DH. Three proteins of two fold or higher accumulation that are specific to each line were found 3 days after innoculation of the Plasmodiphora brassicae. They are glutamine synthetase, malate dehydrogenase/oxidoreductase and fructose-bisphosphate aldolase in the 94SK and actin, phosphoglycerate kinase, and Cu/Zn superoxide dismutase in the CR Shinki line. From the comparison of the synthesized proteins in the 94SK and the CR Shinki, CR Shinki was found to produce more ATP-binding protein for the ABC transporter while 94SK showed a higher level of pathogenesis-related protein 1 production. All of these proteomic variations may lead to the development of molecular markers to accelerate the breeding process.

[ ${\alpha}$ ]Synuclein Induces Unfolded Protein Response Via Distinct Signaling Pathway Independent of ER-membrane Kinases

  • Kang, Shin-Jung;Shin, Ki-Soon;Kim Kwon, Yun-Hee
    • Animal cells and systems
    • /
    • 제10권3호
    • /
    • pp.115-120
    • /
    • 2006
  • Parkinson's disease (PD) is a neurodegenerative disease caused by selective degeneration of dopaminergic neurons in the substantia nigra. Mutations in ${\alpha}$-synuclein have been causally linked to the pathogenesis of hereditary PD. In addition, it is a major component of Lewy body found in the brains of sporadic cases as well. In the present study, we examined whether overexpression of wild type or PD-related mutant ${\alpha}$-synuclein induces unfolded protein response (UPR) and triggers the known signaling pathway of the resulting endoplasmic reticulum (ER) stress in SH-SY5Y cells. Overexpression of wild type, A30P, and A53T ${\alpha}$-synuclein all induced XBP-1 mRNA splicing, one of the late stage UPR events. However, activation of ER membrane kinases and upregulation of ER or cytoplsmic chaperones were not detected when ${\alpha}$-synuclein was overexpressed. However, basal level of cytoplsmic calcium was elevated in ${\alpha}$-synuclein-expressing cells. Our observation suggests that overexpression of ${\alpha}$-synuclein induces UPR independent of the known ER membrane kinase-mediated signaling pathway and induces ER stress by disturbing calcium homeostasis.

Similarities of Tobacco Mosaic Virus-Induced Hypersensitive Cell Death and Copper-Induced Abiotic Cell Death in Tobacco

  • Oh, Sang-Keun;Cheong, Jong-Joo;Ingyu Hwang;Park, Doil
    • The Plant Pathology Journal
    • /
    • 제15권1호
    • /
    • pp.8-13
    • /
    • 1999
  • Hypersensitive cell death of plants during incompatible plant-pathogen interactions is one of the efficient defense mechanisms of plants against pathogen infections. For better understanding of the molecular mechanisms involved in the plant hypersensitive response (HR), TMV-induced biotic plant cell death and CuSO4-induced abiotic plant cell death were compared in terms of expression patterns of ten different defense-related genes as molecular markers. The genes include five pathogenesis-related protein genes, two plant secondary metabolite-associated genes, two oxidative stress-related genes and one wound-inducible gene isolated from tobacco. Northern blot analyses revealed that a same set of defense-related genes was induced during both biotic and abiotic cell death but with different time and magnitude. The expression of defense-related genes in tobacco plants was temporarily coincided with the time of cell death. However, when suspension cell cultures was used to monitor the expression of defense-related genes, different patterns of the gene expression were detected. This result implies that three are common and, in addition, also different branches of signaling pathways leading to the induced expression of defense-related genes in tobacco during the pathogen- and heavy metal-induced cell death.

  • PDF