• Title/Summary/Keyword: path failure

Search Result 353, Processing Time 0.03 seconds

Cap truss and steel strut to resist progressive collapse in RC frame structures

  • Zahrai, Seyed Mehdi;Ezoddin, Alireza
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.635-647
    • /
    • 2018
  • In order to improve the efficiency of the Reinforced Concrete, RC, structures against progressive collapse, this paper proposes a procedure using alternate path and specific local resistance method to resist progressive collapse in intermediate RC frame structures. Cap truss consists of multiple trusses above a suddenly removed structural element to restrain excessive collapse and provide an alternate path. Steel strut is used as a brace to resist compressive axial forces. It is similar to knee braces in the geometry, responsible for enhancing ductility and preventing shear force localization around the column. In this paper, column removals in the critical position at the first story of two 5 and 10-story regular buildings strengthened using steel strut or cap truss are studied. Based on nonlinear dynamic analysis results, steel strut can only decrease vertical displacement due to sudden removal of the column at the first story about 23%. Cap truss can reduce the average vertical displacement and column axial force transferred to adjacent columns for the studied buildings about 56% and 61%, respectively due to sudden removal of the column. In other words, using cap truss, the axial force in the removed column transfers through an alternate path to adjacent columns to prevent local or general failure or to delay the progressive collapse occurrence.

Energy-efficient Multicast Algorithm for Survivable WDM Networks

  • Pu, Xiaojuan;Kim, Young-Chon
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.315-324
    • /
    • 2017
  • In recent years, multicast services such as high-definition television (HDTV), video conferencing, interactive distance learning, and distributed games have increased exponentially, and wavelength-division multiplexing (WDM) networks are considered to be a promising technology due to their support for multicast applications. Multicast survivability in WDM networks has been the focus of extensive attention since a single-link failure in an optical network may result in a massive loss of data. But the improvement of network survivability increases energy consumption due to more resource allocation for protection. In this paper, an energy-efficient multicast algorithm (EEMA) is proposed to reduce energy consumption in WDM networks. Two cost functions are defined based on the link state to determine both working and protection paths for a multicast request in WDM networks. To increase the number of sleeping links, the link cost function of the working path aims to integrate new working path into the links with more working paths. Sleeping links indicate the links in sleep mode, which do not have any working path. To increase bandwidth utilization by sharing spare capacity, the cost function of the protection path is defined to use sleeping fibers for establishing new protection paths. Finally, the performance of the proposed algorithm is evaluated in terms of energy consumption, and also the blocking probability is evaluated under various traffic environments through OPNET. Simulation results show that our algorithm reduces energy consumption while maintaining the quality of service.

Prioritized Multipath Video Forwarding in WSN

  • Asad Zaidi, Syed Muhammad;Jung, Jieun;Song, Byunghun
    • Journal of Information Processing Systems
    • /
    • v.10 no.2
    • /
    • pp.176-192
    • /
    • 2014
  • The realization of Wireless Multimedia Sensor Networks (WMSNs) has been fostered by the availability of low cost and low power CMOS devices. However, the transmission of bulk video data requires adequate bandwidth, which cannot be promised by single path communication on an intrinsically low resourced sensor network. Moreover, the distortion or artifacts in the video data and the adherence to delay threshold adds to the challenge. In this paper, we propose a two stage Quality of Service (QoS) guaranteeing scheme called Prioritized Multipath WMSN (PMW) for transmitting H.264 encoded video. Multipath selection based on QoS metrics is done in the first stage, while the second stage further prioritizes the paths for sending H.264 encoded video frames on the best available path. PMW uses two composite metrics that are comprised of hop-count, path energy, BER, and end-to-end delay. A color-coded assisted network maintenance and failure recovery scheme has also been proposed using (a) smart greedy mode, (b) walking back mode, and (c) path switchover. Moreover, feedback controlled adaptive video encoding can smartly tune the encoding parameters based on the perceived video quality. Computer simulation using OPNET validates that the proposed scheme significantly outperforms the conventional approaches on human eye perception and delay.

An Energy Efficient Routing Protocol using MAC-layer resources in Mobile Ad Hoc Networks (이동 애드혹 네트워크에서 MAC 계층 자원을 이용한 에너지 효율 라우팅 프로토콜)

  • Yoo, Dae-Hun;Choi, Woong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.219-228
    • /
    • 2007
  • End-to-end path setup and maintenance are very important for mobile ad-hoc wireless communications, because of the mobility and the limited battery capacity of the nodes in the networks. the AODV routing protocol is the one of mary proposed protocols. However, there are route failure problem with the Proposed protocols between intermediate nodes due to such mobility and exhausted battery characteristics, and this is because only the shortest hop count is considered for the route setup. If route failure happens. Problem such as the waste of bandwidth and the increment of the energy consumption occur because of the discarding data packets in the intermediate nodes and the path re-setup process required by the source node. In addition, it obviously causes the network lifetime to be shortened. This paper proposes a routing protocol based on the AODV routing protocol that it makes use of the remaining energy, signal strength and SNR of the MAC layer resources to setup a path.

  • PDF

Failure Detection and Resilience in HRing Overlay Network (HRing 오버레이 네트워크에서 실패 탐지 및 회복)

  • Gu, Tae-Wan;Lee, Kwang-Mo
    • Journal of Internet Computing and Services
    • /
    • v.8 no.5
    • /
    • pp.21-33
    • /
    • 2007
  • An overlay network is a virtual network which is constructed on top of a physical computer network. A node in the overlay network is connected through virtual or logical links, where each link corresponds to a path of the links in the underlying physical network. Overlay networks are suitable for sharing heterogeneous resources in distributed environments, However, overlay networks are limited for achieving reliable communication that failure detection in overlay networks is a very important issue. In this paper, we review conditions of conventional failure detection and propose a new approach to failure detection and resilience which can be applied to HRing (Hierarchical Ring) overlay networks. The proposed method consists of the failure detection and the failure resilience phases. Because it utilizes the characteristics of the HRing overlay network for failure detection, it can reduce unnecessary network traffic and provide better scalability and flexibility. We also analyzed and evaluated the performance of the proposed approach through simulations.

  • PDF

QoS-Aware Approach for Maximizing Rerouting Traffic in IP Networks

  • Cui, Wenyan;Meng, Xiangru;Yang, Huanhuan;Kang, Qiaoyan;Zhao, Zhiyuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4287-4306
    • /
    • 2016
  • Network resilience provides an effective way to overcome the problem of network failure and is crucial to Internet protocol (IP) network management. As one of the main challenges in network resilience, recovering from link failure is important to maintain the constancy of packets being transmitted. However, existing failure recovery approaches do not handle the traffic engineering problem (e.g., tuning the routing-protocol parameters to optimize the rerouting traffic flow), which may cause serious congestions. Moreover, as the lack of QoS (quality of service) restrictions may lead to invalid rerouting traffic, the QoS requirements (e.g., bandwidth and delay) should also be taken into account when recovering the failed links. In this paper, we first develop a probabilistically correlated failure model that can accurately reflect the correlation between link failures, with which we can choose reliable backup paths (BPs). Then we construct a mathematical model for the failure recovery problem, which takes maximum rerouting traffic as the optimizing objective and the QoS requirements as the constraints. Moreover, we propose a heuristic algorithm for link failure recovery, which adopts the improved k shortest path algorithm to splice the single BP and supplies more protection resources for the links with higher priority. We also prove the correctness of the proposed algorithm. Moreover, the time and space complexity are also analyzed. Simulation results under NS2 show that the proposed algorithm improves the link failure recovery rate and increases the QoS satisfaction rate significantly.

A Model-based Test Approach and Case Study for Weapon Control System (모델기반 테스트 기법 및 무장통제장치 적용 사례)

  • Bae, Jung Ho;Jang, Bucheol;Koo, Bongjoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.688-699
    • /
    • 2017
  • Model-based test, a well-known method of the black box tests, is consisted of the following four steps : model construction using requirement, test case generation from the model, execution of a SUT (software under test) and detection failures. Among models constructed in the first step, state-based models such as UML standard State Machine are commonly used to design event-based embedded systems (e.g., weapon control systems). To generate test cases from state-based models in the next step, coverage-based techniques such as state coverage and transition coverage are used. Round-trip path coverage technique using W-Method, one of coverage-based techniques, is known as more effective method than others. However it has a limitation of low failure observability because the W-Method technique terminates a testing process when arrivals meet states already visited and it is hard to decide the current state is completely same or not with the previous in the case like the GUI environment. In other words, there can exist unrevealed faults. Therefore, this study suggests a Extended W-Method. The Extended W-Method extends the round-trip path to a final state to improve failure observability. In this paper, we compare effectiveness and efficiency with requirement-item-based technique, W-Method and our Extended W-Method. The result shows that our technique can detect five and two more faults respectively and has the performance of 28 % and 42 % higher failure detection probability than the requirement-item-based and W-Method techniques, respectively.

Risk Assessment and Application in Chemical Plants Using Fault Tree Analysis (FTA를 이용한 화학공장의 위험성 평가 및 응용)

  • Kim Yun-Hwa;Kim Ky-Soo;Yoon Sung-Ryul;Um Sung-In;Ko Jae-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.81-86
    • /
    • 1997
  • This study is to estimate the possibility of accident in chemical plants from the analysis of system component which affects the occurrence of top event. Among the various risk assessment techniques, the Fault Tree Analysis which approaches deductively on the route of accident development was used in this study. By gate-by-gate method and minimal cut set, the qualitative and quantitative risk assessment for hazards in plants was performed. The probability of occurrence and frequency of top event was calculated from failure or reliability data of system components at stage of the quantitative risk assessment. In conclusion, the probability of accident was estimated according to logic pattern based on the Fault Tree Analysis. And the failure path which mostly influences on the occurrence of top event was found from Importance Analysis.

  • PDF

Fracture Simulation of UHPFRC Girder with the Interface Type Model (경계형 모델을 사용한 초고강도 섬유보강 콘크리트거더의 파괴역학적 해석)

  • Guo, Yi-Hong;Han, Sang-Mook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.81-94
    • /
    • 2010
  • This paper deals with the fracture simulation of UHPFRC girder with the interface type model. Based on the existing numerical simulation of quasi-brittle fracture in normal strength concrete, constitutive modeling for UHPFRC I-girder has been improved by including a tensile hardening at the failure surface. The finite element formulation is based on a triangular unit, constructed from constant strain triangles, with nodes along its sides and neither at the vertex nor the center of the unit. Fracture is simulated through a hardening/softening fracture constitutive law in tension, a softening fracture constitutive law in shear as well as in compression at the boundary nodes, with the material within the triangular unit remaining linear elastic. LCP is used to formulate the path-dependent hardening-softening behavior in non-holonomic rate form and a mathematical programming algorithm is employed to solve the LCP. The piece-wise linear inelastic yielding-failure/failure surface is modeled with two compressive caps, two Mohr-Coulomb failure surfaces, a tensile yielding surface and a tensile failure surface. The comparison between test results and numerical results indicates this method effectively simulates the deformation and failure of specimen.

Statistical Analysis for Path Break-Up Time of Mobile Wireless Networks (이동 무선망의 경로 붕괴시간에 대한 통계적 분석)

  • Ahn, Hong-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.5
    • /
    • pp.113-118
    • /
    • 2015
  • Mobile wireless networks have received a lot of attention as a future wireless network due to its rapid deployment without communication infrastructure. In these networks communication path between two arbitrary nodes break down because some links in the path are beyond transmission range($r_0$) due to the mobility of the nodes. The set of total path break down time(${\bigcup}T_i$), which is the union of path break down time of every node pair, can be a good measure of the connectivity of the dynamic mobile wireless network. In this paper we show that the distribution of the total path break down time can be approximated as a exponential probability density function and confirms it through experimental data. Statistical knowledge of break down time enables quantitative prediction of delay, packet loss between two nodes, thus provides confidence in the simulation results of mobile wireless networks.