• Title/Summary/Keyword: path collision

Search Result 344, Processing Time 0.028 seconds

Mobile Robot Path Planning considering both the Distance and Safety (거리와 안전도를 고려한 이동 로봇 경로 계획)

  • Cho, Dong-Kwon;Chung, Myung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.492-495
    • /
    • 1990
  • This paper introduces a path planning technique for a mobile robot in the presence of obstacles. In the technique, workspace is described by regional graph and represented obstacles by the three-layer neural network. And performance cost is defined under consideration both the traveling distance and the safety of a mobile robot. Then a collision-free path is obtained using the neural optimization technique.

  • PDF

An Constraint Based Approach to Planning Collision-Free Navigation of Multi-AUVs with Environmental Disturbances (환경 외란을 고려한 다중 자율잠수정의 제한적 기법 기반 주행 계획기)

  • Ji, Sang-Hoon;Ko, Woo-Hyun;Jung, Yeun-Soo;Lee, Beom-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.53-65
    • /
    • 2008
  • This paper proposes the qualitative method for planning the operation of multi-AUVs with environmental disturbances, which is considered to be a very difficult task. In this paper we use an extension collision map as a collision free motion planner. The tool was originally developed for the multiple ground vehicles with no internal/external disturbance. In order to apply the method to a water environment where there are tides and waves, and currents, we analyze the path deviation error of AUVs caused by external disturbances. And we calculate safety margin for the collision avoidance on the extension collision map. Finally, the simulation result proves that the suggested method in this paper make multi-AUVs navigate to the goal point effectively with no collision among them.

Local Collision Avoidance of Multiple Robots Using Avoidability Measure and Relative Distance

  • Ko, Nak-Yong;Seo, Dong-Jin;Kim, Koung-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.132-144
    • /
    • 2004
  • This paper presents a new method driving multiple robots to their goal position without collision. To consider the movement of the robots in a work area, we adopt the concept of avoidability measure. The avoidability measure figures the degree of how easily a robot can avoid other robots considering the velocity of the robots. To implement the concept to avoid collision among multiple robots, relative distance between the robots is proposed. The relative distance is a virtual distance between robots indicating the threat of collision between the robots. Based on the relative distance, the method calculates repulsive force against a robot from the other robots. Also, attractive force toward the goal position is calculated in terms of the relative distance. These repulsive force and attractive force are added to form the driving force for robot motion. The proposed method is simulated for several cases. The results show that the proposed method steers robots to open space anticipating the approach of other robots. In contrast, since the usual potential field method initiates avoidance motion later than the proposed method, it sometimes fails preventing collision or causes hasty motion to avoid other robots. The proposed method works as a local collision-free motion coordination method in conjunction with higher level of task planning and path planning method for multiple robots to do a collaborative job.

A method for automatically generating a route consisting of line segments and arcs for autonomous vehicle driving test (자율이동체의 주행 시험을 위한 선분과 원호로 이루어진 경로 자동 생성 방법)

  • Se-Hyoung Cho
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • Path driving tests are necessary for the development of self-driving cars or robots. These tests are being conducted in simulation as well as real environments. In particular, for development using reinforcement learning and deep learning, development through simulators is also being carried out when data of various environments are needed. To this end, it is necessary to utilize not only manually designed paths but also various randomly and automatically designed paths. This test site design can be used for actual construction and manufacturing. In this paper, we introduce a method for randomly generating a driving test path consisting of a combination of arcs and segments. This consists of a method of determining whether there is a collision by obtaining the distance between an arc and a line segment, and an algorithm that deletes part of the path and recreates an appropriate path if it is impossible to continue the path.

Dynamic Path Planning for Autonomous Mobile Robots (자율이동로봇을 위한 동적 경로 계획 방법)

  • Yoon, Hee-Sang;You, Jin-Oh;Park, Tae-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.392-398
    • /
    • 2008
  • We propose a new path planning method for autonomous mobile robots. To maximize the utility of mobile robots, the collision-free shortest path should be generated by on-line computation. In this paper, we develop an effective and practical method to generate a good solution by lower computation time. The initial path is obtained from skeleton graph by Dijkstra's algorithm. Then the path is improved by changing the graph and path dynamically. We apply the dynamic programming algorithm into the stage of improvement. Simulation results are presented to verify the performance of the proposed method.

A Method of Path Planning for a Quadruped Walking Robot on Irregular Terrain (불규칙 지형에서 사가 보행 로보트의 경로 계획 방법)

  • ;Zeungnam Biem
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.329-338
    • /
    • 1994
  • This paper presents a novel method of path planning for a quadruped walking robot on irregular terrain. In the previous study on the path planning problem of mobile robots, it has been usually focused on the collision-free path planning for wheeled robots. The path planning problem of legged roboth, however, has unique aspects from the point of viw that the legged robot can cross over the obstacles and the gait constraint should be considered in the process of planning a path. To resolve this unique problem systematically, a new concept of the artificial intensity field of light is numerically constructed over the configuration space of the robot including the transformed obstacles and a feasible path is sought in the field. Also, the efficiency of the proposed method is shown by various simulation results.

  • PDF

Planning of Safe and Efficient Local Path based on Path Prediction Using a RGB-D Sensor (RGB-D센서 기반의 경로 예측을 적용한 안전하고 효율적인 지역경로 계획)

  • Moon, Ji-Young;Chae, Hee-Won;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.2
    • /
    • pp.121-128
    • /
    • 2018
  • Obstacle avoidance is one of the most important parts of autonomous mobile robot. In this study, we proposed safe and efficient local path planning of robot for obstacle avoidance. The proposed method detects and tracks obstacles using the 3D depth information of an RGB-D sensor for path prediction. Based on the tracked information of obstacles, the paths of the obstacles are predicted with probability circle-based spatial search (PCSS) method and Gaussian modeling is performed to reduce uncertainty and to create the cost function of caution. The possibility of collision with the robot is considered through the predicted path of the obstacles, and a local path is generated. This enables safe and efficient navigation of the robot. The results in various experiments show that the proposed method enables robots to navigate safely and effectively.

High-Speed Path Planning of a Mobile Robot Using Gradient Method with Topological Information (위상정보를 갖는 구배법에 기반한 이동로봇의 고속 경로계획)

  • Ham Jong-Gyu;Chung Woo-Jin;Song Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.444-449
    • /
    • 2006
  • Path planning is a key element in navigation of a mobile robot. Several algorithms such as a gradient method have been successfully implemented so for. Although the gradient method can provide the global optimal path, it computes the navigation function over the whole environment at all times, which result in high computational cost. This paper proposes a high-speed path planning scheme, called a gradient method with topological information, in which the search space for computation of a navigation function can be remarkably reduced by exploiting the characteristics of the topological information reflecting the topology of the navigation path. The computing time of the gradient method with topological information can therefore be significantly decreased without losing the global optimality. This reduced path update period allows the mobile robot to find a collision-free path even in the dynamic environment.

Collision-Free Trajectory Planning for Dual Robot Arms Using Iterative Learning Concept (反復 學習槪念을 利용한 두 臺의 로봇의 衝突回避 軌跡計劃)

  • 정낙영;서일홍;최동훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.69-77
    • /
    • 1991
  • A collision-free trajectory planning algorithm using an iterative learning concept is proposed for dual robot arms in a 3-D common workspace to accurately follow their specified paths with constant velocities. Specifically, a collision-free trajectory minimizing the trajectory error is obtained first by employing the linear programming technique. Then the total operating time is iteratively adjusted based on the maximum trajectory error of the previous iteration so that the collision-free trajectory has no deviation from the specified path and also that the operating time is near-minimal. To show the validity of the proposed algorithm, a numerical example is presented based on two planar robots.

A Study on the Classification of the Car Accidents Types based on the Negligence Standards of Auto Insurance (자동차보험 과실기준 기반 자동차사고유형 체계화에 관한 연구)

  • Park, Yohan;Park, Wonpil;Kim Seungki
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.53-59
    • /
    • 2021
  • According to the Korean Traffic Accident Analysis System (TAAS), more than 200,000 traffic accidents occur every year. Also, the statistics including auto insurance companies data show 1.3 million traffic accidents. In the case of TAAS, the types of traffic accidents are simply divided into four; frontal collision, side collision, rear collision, and rollover. However, more detailed information is needed to assess for advanced driver assist systems at intersections. For example, directional information is needed, such as whether the vehicle in the car accident way in a straight or a left turn, etc. This study intends to redefine the type of accident with the more clear driving direction and path by referring to the Negligence standards used in automobile insurance accidents. The standards largely divide five categories of car-to-car/motorcycle /pedestrian/cyclist, and highway, and the each category is classified into dozens of types by status of the traffic signal, conflict situations. In order to present more various accident types for auto insurance accidents, the standards are reclassified driving direction and path of vehicles from crash situations. In results, the car-to-car accidents are classified into 33 accident types, car-to-pedestrian accidents have 19 accident types, car-to-motorcycle accidents have 38 accident types, and car-to-cyclist accidents are derived into 26 types.