• Title/Summary/Keyword: pasternak elastic foundations

Search Result 92, Processing Time 0.058 seconds

Three-dimensional vibration analysis of 3D graphene foam curved panels on elastic foundations

  • Zhao, Li-Cai;Chen, Shi-Shuenn;Khajehzadeh, Mohammad;Yousif, Mariwan Araz;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.91-106
    • /
    • 2022
  • This paper has focused on presenting a three dimensional theory of elasticity for free vibration of 3D-graphene foam reinforced polymer matrix composites (GrF-PMC) cylindrical panels resting on two-parameter elastic foundations. The elastic foundation is considered as a Pasternak model with adding a Shear layer to the Winkler model. The porous graphene foams possessing 3D scaffold structures have been introduced into polymers for enhancing the overall stiffness of the composite structure. Also, 3D graphene foams can distribute uniformly or non-uniformly in the shell thickness direction. The effective Young's modulus, mass density and Poisson's ratio are predicted by the rule of mixture. Three complicated equations of motion for the panel under consideration are semi-analytically solved by using 2-D differential quadrature method. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. Because of using two-dimensional generalized differential quadrature method, the present approach makes possible vibration analysis of cylindrical panels with two opposite axial edges simply supported and arbitrary boundary at the curved edges. It is explicated that 3D-GrF skeleton type and weight fraction can significantly affect the vibrational characteristics of GrF-PMC panel resting on two-parameter elastic foundations.

Vibration analysis of sandwich sectorial plates considering FG wavy CNT-reinforced face sheets

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.541-557
    • /
    • 2018
  • This paper presents the influence of carbon nanotubes (CNTs) waviness and aspect ratio on the vibrational behavior of functionally graded nanocomposite sandwich annular sector plates resting on two-parameter elastic foundations. The carbon nanotube-reinforced (CNTR) sandwich plate has smooth variation of CNT fraction along the thickness direction. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness and their mechanical properties are estimated by an extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. Effects of CNT distribution, volume fraction, aspect ratio and waviness, and also effects of Pasternak's elastic foundation coefficients, sandwich plate thickness, face sheets thickness and plate aspect ratio are investigated on the free vibration of the sandwich plates with wavy CNT-reinforced face sheets. The study is carried out based on three-dimensional theory of elasticity and in contrary to two-dimensional theories, such as classical, the first- and the higher-order shear deformation plate theories, this approach does not neglect transverse normal deformations. The sandwich annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free.

A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium

  • Yazid, Miloud;Heireche, Houari;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Houari, Mohammed Sid Ahmed
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.15-25
    • /
    • 2018
  • This work presents the buckling investigation of embedded orthotropic nanoplates such as graphene by employing a new refined plate theory and nonlocal small-scale effects. The elastic foundation is modeled as two-parameter Pasternak foundation. The proposed two-variable refined plate theory takes account of transverse shear influences and parabolic variation of the transverse shear strains within the thickness of the plate by introducing undetermined integral terms, hence it is unnecessary to use shear correction factors. Nonlocal governing equations for the single layered graphene sheet are obtained from the principle of virtual displacements. The proposed theory is compared with other plate theories. Analytical solutions for buckling loads are obtained for single-layered graphene sheets with isotropic and orthotropic properties. The results presented in this study may provide useful guidance for design of orthotropic graphene based nanodevices that make use of the buckling properties of orthotropic nanoplates.

Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations

  • Benferhat, Rabia;Daouadji, Tahar Hassaine;Mansour, Mohamed Said;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1429-1449
    • /
    • 2016
  • The effect of porosity on bending and free vibration behavior of simply supported functionally graded plate reposed on the Winkler-Pasternak foundation is investigated analytically in the present paper. The modified rule of mixture covering porosity phases is used to describe and approximate material properties of the FGM plates with porosity phases. The effect due to transverse shear is included by using a new refined shear deformation theory. The number of unknown functions involved in the present theory is only four as against five or more in case of other shear deformation theories. The Poisson ratio is held constant. Based on the sinusoidal shear deformation theory, the position of neutral surface is determined and the equation of motion for FG rectangular plates resting on elastic foundation based on neutral surface is obtained through the minimum total potential energy and Hamilton's principle. The convergence of the method is demonstrated and to validate the results, comparisons are made with the available solutions for both isotropic and functionally graded material (FGM). The effect of porosity volume fraction on Al/Al2O3 and Ti-6Al-4V/Aluminum oxide plates are presented in graphical forms. The roles played by the constituent volume fraction index, the foundation stiffness parameters and the geometry of the plate is also studied.

Thermo-mechanical post-buckling behavior of thick functionally graded plates resting on elastic foundations

  • Bakora, Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.85-106
    • /
    • 2015
  • Postbuckling of thick plates made of functionally graded material (FGM) subjected to in-plane compressive, thermal and thermomechanical loads is investigated in this work. It is assumed that the plate is in contact with a Pasternak-type elastic foundation during deformation. Thermomechanical non-homogeneous properties are considered to be temperature independent, and graded smoothly by the distribution of power law across the thickness in the thickness in terms of the volume fractions of constituents. By employing the higher order shear deformation plate theory together the non-linear von-Karman strain-displacement relations, the equilibrium and compatibility equations of imperfect FGM plates are derived. The Galerkin technique is used to determine the buckling loads and postbuckling equilibrium paths for simply supported plates. Numerical examples are presented to show the influences of power law index, foundation stiffness and imperfection on the buckling and postbuckling loading capacity of the plates.

Hygro-thermo-mechanical vibration and buckling of exponentially graded nanoplates resting on elastic foundations via nonlocal elasticity theory

  • Sobhy, Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.401-415
    • /
    • 2017
  • In this article, hygro-thermo-mechanical vibration and buckling of exponentially graded (EG) nanoplates resting on two-parameter Pasternak foundations are studied using the four-unknown shear deformation plate theory. The material properties are presumed to change only in the thickness direction of the EG nanoplate according to two exponential laws distribution. The boundary conditions of the nanoplate may be simply supported, clamped, free or combination of them. To consider the small scale effect on forced frequencies and buckling, Eringen's differential form of nonlocal elasticity theory is employed. The accuracy of the present study is investigated considering the available solutions in literature. A detailed analysis is executed to study the influences of the plate aspect ratio, side-to-thickness ratio, temperature rise, moisture concentration and volume fraction distributions on the vibration and buckling of the nanoplates.

Nonlocal strain gradient-based vibration analysis of embedded curved porous piezoelectric nano-beams in thermal environment

  • Ebrahimi, Farzad;Daman, Mohsen;Jafari, Ali
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.709-728
    • /
    • 2017
  • This disquisition proposes a nonlocal strain gradient beam theory for thermo-mechanical dynamic characteristics of embedded smart shear deformable curved piezoelectric nanobeams made of porous electro-elastic functionally graded materials by using an analytical method. Electro-elastic properties of embedded curved porous FG nanobeam are assumed to be temperature-dependent and vary through the thickness direction of beam according to the power-law which is modified to approximate material properties for even distributions of porosities. It is perceived that during manufacturing of functionally graded materials (FGMs) porosities and micro-voids can be occurred inside the material. Since variation of pores along the thickness direction influences the mechanical and physical properties, so in this study thermo-mechanical vibration analysis of curve FG piezoelectric nanobeam by considering the effect of these imperfections is performed. Nonlocal strain gradient elasticity theory is utilized to consider the size effects in which the stress for not only the nonlocal stress field but also the strain gradients stress field. The governing equations and related boundary condition of embedded smart curved porous FG nanobeam subjected to thermal and electric field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is utilized to achieve the natural frequencies of porous FG curved piezoelectric nanobeam resting on Winkler and Pasternak foundation. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality parameter, electric voltage, coefficient of porosity, elastic foundation parameters, thermal effect, gradient index, strain gradient, elastic opening angle and slenderness ratio on the natural frequency of embedded curved FG porous piezoelectric nanobeam are successfully discussed. It is concluded that these parameters play important roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.

On wave dispersion properties of functionally graded plates resting on elastic foundations using quasi-3D and 2D HSDT

  • Bennai, Riadh;Mellal, Fatma;Nebab, Mokhtar;Fourn, Hocine;Benadouda, Mourad;Atmane, Hassen Ait;Tounsi, Abdelouahed;Hussain, Muzamal
    • Earthquakes and Structures
    • /
    • v.22 no.5
    • /
    • pp.447-460
    • /
    • 2022
  • In this article, wave propagation in functional gradation plates (FG) resting on an elastic foundation with two parameters is studied using a new quasi-three-dimensional (3D) higher shear deformation theory (HSDT). The new qausi-3D HSOT has only five variables in fields displacement, which means has few numbers of unknowns compared with others quasi-3D. This higher shear deformation theory (HSDT) includes shear deformation and effect stretching with satisfying the boundary conditions of zero traction on the surfaces of the FG plate without the need for shear correction factors. The FG plates are considered to rest on the Winkler layer, which is interconnected with a Pasternak shear layer. The properties of the material graded for the plates are supposed to vary smoothly, with the power and the exponential law, in the z-direction. By based on Hamilton's principle, we derive the governing equations of FG plates resting on an elastic foundation, which are then solved analytically to obtain the dispersion relations. Numerical results are presented in the form of graphs and tables to demonstrate the effectiveness of the current quasi-3D theory and to analyze the effect of the elastic foundation on wave propagation in FG plates.

A comparative study for beams on elastic foundation models to analysis of mode-I delamination in DCB specimens

  • Shokrieh, Mahmood Mehrdad;Heidari-Rarani, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.149-162
    • /
    • 2011
  • The aim of this research is a comprehensive review and evaluation of beam theories resting on elastic foundations that used to model mode-I delamination in multidirectional laminated composite by DCB specimen. A compliance based approach is used to calculate critical strain energy release rate (SERR). Two well-known beam theories, i.e. Euler-Bernoulli (EB) and Timoshenko beams (TB), on Winkler and Pasternak elastic foundations (WEF and PEF) are considered. In each case, a closed-form solution is presented for compliance versus crack length, effective material properties and geometrical dimensions. Effective flexural modulus ($E_{fx}$) and out-of-plane extensional stiffness ($E_z$) are used in all models instead of transversely isotropic assumption in composite laminates. Eventually, the analytical solutions are compared with experimental results available in the literature for unidirectional ($[0^{\circ}]_6$) and antisymmetric angle-ply ($[{\pm}30^{\circ}]_5$, and $[{\pm}45^{\circ}]_5$) lay-ups. TB on WEF is a simple model that predicts more accurate results for compliance and SERR in unidirectional laminates in comparison to other models. TB on PEF, in accordance with Williams (1989) assumptions, is too stiff for unidirectional DCB specimens, whereas in angle-ply DCB specimens it gives more reliable results. That it shows the effects of transverse shear deformation and root rotation on SERR value in composite DCB specimens.

A cylindrical shell model for nonlocal buckling behavior of CNTs embedded in an elastic foundation under the simultaneous effects of magnetic field, temperature change, and number of walls

  • Timesli, Abdelaziz
    • Advances in nano research
    • /
    • v.11 no.6
    • /
    • pp.581-593
    • /
    • 2021
  • This model is proposed to describe the buckling behavior of Carbon Nanotubes (CNTs) embedded in an elastic medium taking into account the combined effects of the magnetic field, the temperature, the nonlocal parameter, the number of walls. Using Eringen's nonlocal elasticity theory, thin cylindrical shell theory and Van der Waal force (VdW) interactions, we develop a system of partial differential equations governing the buckling response of CNTs embedded on Winkler, Pasternak, and Kerr foundations in a thermal-magnetic environment. The pre-buckling stresses are obtained by applying airy's stress function and an adjacent equilibrium criterion. To estimate the nonlocal critical buckling load of CNTs under the simultaneous effects of the magnetic field, the temperature change, and the number of walls, an optimization technique is proposed. Furthermore, analytical formulas are developed to obtain the buckling behavior of SWCNTs embedded in an elastic medium without taking into account the effects of the nonlocal parameter. These formulas take into account VdW interactions between adjacent tubes and the effect of terms involving differences in tube radii generally neglected in the derived expressions of the critical buckling load published in the literature. Most scientific research on modeling the effects of magnetic fields is based on beam theories, this motivation pushes me to develop a cylindrical shell model for studying the effect of the magnetic field on the static behavior of CNTs. The results show that the magnetic field has significant effects on the static behavior of CNTs and can lead to slow buckling. On the other hand, thermal effects reduce the critical buckling load. The findings in this work can help us design of CNTs for various applications (e.g. structural, electrical, mechanical and biological applications) in a thermal and magnetic environment.