• Title/Summary/Keyword: pasternak elastic foundations

Search Result 92, Processing Time 0.019 seconds

Static response of 2-D functionally graded circular plate with gradient thickness and elastic foundations to compound loads

  • Behravan Rad, A.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.2
    • /
    • pp.139-161
    • /
    • 2012
  • In this paper, the static behavior of bi-directional functionally graded (FG) non-uniform thickness circular plate resting on quadratically gradient elastic foundations (Winkler-Pasternak type) subjected to axisymmetric transverse and in-plane shear loads is carried out by using state-space and differential quadrature methods. The governing state equations are derived based on 3D theory of elasticity, and assuming the material properties of the plate except the Poisson's ratio varies continuously throughout the thickness and radius directions in accordance with the exponential and power law distributions. The stresses and displacements distribution are obtained by solving state equations. The effects of foundation stiffnesses, material heterogeneity indices, geometric parameters and loads ratio on the deformation and stress distributions of the FG circular plate are investigated in numerical examples. The results are reported for the first time and the new results can be used as a benchmark solution for future researches.

Free vibration analysis of thick CGFR annular sector plates resting on elastic foundations

  • Tahouneh, Vahid
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.773-796
    • /
    • 2014
  • This paper deals with free vibration analysis of continuous grading fiber reinforced (CGFR) and bi-directional FG annular sector plates on two-parameter elastic foundations under various boundary conditions, based on the three-dimensional theory of elasticity. The plates with simply supported radial edges and arbitrary boundary conditions on their circular edges are considered. A semi-analytical approach composed of differential quadrature method (DQM) and series solution is adopted to solve the equations of motion. Some new results for the natural frequencies of the plate are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. Results indicate that the non-dimensional natural frequency parameter of a functionally graded fiber volume fraction is larger than that of a discrete laminated and close to that of a 2-layer. It results that the CGFR plate attains natural frequency higher than those of traditional discretely laminated composite ones and this can be a benefit when higher stiffness of the plate is the goal and that is due to the reduction in spatial mismatch of material properties. Moreover, it is shown that a graded ceramic volume fraction in two directions has a higher capability to reduce the natural frequency than conventional one-dimensional functionally graded material. The multidirectional graded material can likely be designed according to the actual requirement and it is a potential alternative to the unidirectional functionally graded material. The new results can be used as benchmark solutions for future researches.

Combined influence of variable distribution models and boundary conditions on the thermodynamic behavior of FG sandwich plates lying on various elastic foundations

  • Djamel Eddine Lafi;Abdelhakim Bouhadra;Belgacem Mamen;Abderahmane Menasria;Mohamed Bourada;Abdelmoumen Anis Bousahla;Fouad Bourada;Abdelouahed Tounsi;Abdeldjebbar Tounsi;Murat Yaylaci
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.103-119
    • /
    • 2024
  • The present research investigates the thermodynamically bending behavior of FG sandwich plates, laying on the Winkler/Pasternak/Kerr foundation with various boundary conditions, subjected to harmonic thermal load varying through thickness. The supposed FG sandwich plate has three layers with a ceramic core. The constituents' volume fractions of the lower and upper faces vary gradually in the direction of the FG sandwich plate thickness. This variation is performed according to various models: a Power law, Trigonometric, Viola-Tornabene, and the Exponential model, while the core is constantly homogeneous. The displacement field considered in the current work contains integral terms and fewer unknowns than other theories in the literature. The corresponding equations of motion are derived based on Hamilton's principle. The impact of the distribution model, scheme, aspect ratio, side-to-thickness ratio, boundary conditions, and elastic foundations on thermodynamic bending are examined in this study. The deflections obtained for the sandwich plate without elastic foundations have the lowest values for all boundary conditions. In addition, the minimum deflection values are obtained for the exponential volume fraction law model. The sandwich plate's non-dimensional deflection increases as the aspect ratio increases for all distribution models.

Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory

  • Nebab, Mokhtar;Atmane, Hassen Ait;Bennai, Riadh;Tahar, Benabdallah
    • Earthquakes and Structures
    • /
    • v.17 no.5
    • /
    • pp.447-462
    • /
    • 2019
  • This present paper concerned with the analytic modelling for vibration of the functionally graded (FG) plates resting on non-variable and variable two parameter elastic foundation, based on two-dimensional elasticity using higher shear deformation theory. Our present theory has four unknown, which mean that have less than other higher order and lower theory, and we denote do not require the factor of correction like the first shear deformation theory. The indeterminate integral are introduced in the fields of displacement, it is allowed to reduce the number from five unknown to only four variables. The elastic foundations are assumed a classical model of Winkler-Pasternak with uniform distribution stiffness of the Winkler coefficient (kw), or it is with variables distribution coefficient (kw). The variable's stiffness of elastic foundation is supposed linear, parabolic and trigonometry along the length of functionally plate. The properties of the FG plates vary according to the thickness, following a simple distribution of the power law in terms of volume fractions of the constituents of the material. The equations of motions for natural frequency of the functionally graded plates resting on variables elastic foundation are derived using Hamilton principal. The government equations are resolved, with respect boundary condition for simply supported FG plate, employing Navier series solution. The extensive validation with other works found in the literature and our results are present in this work to demonstrate the efficient and accuracy of this analytic model to predict free vibration of FG plates, with and without the effect of variables elastic foundations.

Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads

  • Hamed, Mostafa A.;Mohamed, Salwa A;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.75-89
    • /
    • 2020
  • The current paper illustrates the effect of in-plane varying compressive force on critical buckling loads and buckling modes of sandwich composite laminated beam rested on elastic foundation. To generalize a proposed model, unified higher order shear deformation beam theories are exploited through analysis; those satisfy the parabolic variation of shear across the thickness. Therefore, there is no need for shear correction factor. Winkler and Pasternak elastic foundations are presented to consider the effect of any elastic medium surrounding beam structure. The Hamilton's principle is proposed to derive the equilibrium equations of unified sandwich composite laminated beams. Differential quadrature numerical method (DQNM) is used to discretize the differential equilibrium equations in spatial direction. After that, eigenvalue problem is solved to obtain the buckling loads and associated mode shapes. The proposed model is validated with previous published works and good matching is observed. The numerical results are carried out to show effects of axial load functions, lamination thicknesses, orthotropy and elastic foundation constants on the buckling loads and mode shapes of sandwich composite beam. This model is important in designing of aircrafts and ships when non-uniform compressive load and shear loading is dominated.

Thermodynamical bending analysis of P-FG sandwich plates resting on nonlinear visco-Pasternak's elastic foundations

  • Abdeldjebbar Tounsi;Adda Hadj Mostefa;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mofareh Hassan Ghazwani;Fouad Bourada;Abdelhakim Bouhadra
    • Steel and Composite Structures
    • /
    • v.49 no.3
    • /
    • pp.307-323
    • /
    • 2023
  • In this research, the study of the thermoelastic flexural analysis of silicon carbide/Aluminum graded (FG) sandwich 2D uniform structure (plate) under harmonic sinusoidal temperature load over time is presented. The plate is modeled using a simple two dimensional integral shear deformation plate theory. The current formulation contains an integral terms whose aim is to reduce a number of variables compared to others similar solutions and therefore minimize the computation time. The transverse shear stresses vary according to parabolic distribution and vanish at the free surfaces of the structure without any use of correction factors. The external load is applied on the upper face and varying in the thickness of the plates. The structure is supposed to be composed of "three layers" and resting on nonlinear visco-Pasternak's-foundations. The governing equations of the system are deduced and solved via Hamilton's principle and general solution. The computed results are compared with those existing in the literature to validate the current formulation. The impacts of the parameters (material index, temperature exponent, geometry ratio, time, top/bottom temperature ratio, elastic foundation type, and damping coefficient) on the dynamic flexural response are studied.

A novel hyperbolic shear deformation theory for the mechanical buckling analysis of advanced composite plates resting on elastic foundations

  • Soltani, Kheira;Bessaim, Aicha;Houari, Mohammed Sid Ahmed;Kaci, Abdelhakim;Benguediab, Mohamed;Tounsi, Abdelouahed;Alhodaly, Mohammed Sh
    • Steel and Composite Structures
    • /
    • v.30 no.1
    • /
    • pp.13-29
    • /
    • 2019
  • This work presents the buckling investigation of functionally graded plates resting on two parameter elastic foundations by using a new hyperbolic plate theory. The main advantage of this theory is that, in addition to including the shear deformation effect, the displacement field is modelled with only four unknowns and which is even less than the first order shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT) by introducing undetermined integral terms, hence it is unnecessary to use shear correction factors. The governing equations are derived using Hamilton's principle and solved using Navier's steps. The validation of the proposed theoretical model is performed to demonstrate the efficacy of the model. The effects of various parameters like the Winkler and Pasternak modulus coefficients, inhomogeneity parameter, aspect ratio and thickness ratio on the behaviour of the functionally graded plates are studied. It can be concluded that the present theory is not only accurate but also simple in predicting the critical buckling loads of functionally graded plates on elastic foundation.

A simple quasi-3D HDST for dynamic behavior of advanced composite plates with the effect of variables elastic foundations

  • Nebab, Mokhtar;Benguediab, Soumia;Atmane, Hassen Ait;Bernard, Fabrice
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.415-431
    • /
    • 2020
  • In this study, dynamics responses of advanced composite plates resting variable elastic foundations via a quasi-3D theory are developed using an analytical approach. This higher shear deformation theory (HSDT) is included the shear deformation theory and effect stretching that has five unknowns, which is even inferior to normal deformation theories found literature and other theories. The quasi-three-dimensional (quasi-3D) theory accounts for a parabolic distribution of the transverse shear deformation and satisfies the zero traction boundary conditions on the surfaces of the advanced composite plate without needing shear correction factors. The plates assumed to be rest on two-parameter elastic foundations, the Winkler parameter is supposed to be constant but the Pasternak parameter varies along the long side of the plate with three distributions (linear, parabolic and sinusoidal). The material properties of the advanced composite plates gradually vary through the thickness according to two distribution models (power law and Mori-Tanaka). Governing differential equations and associated boundary conditions for dynamics responses of the advanced composite plates are derived using the Hamilton principle and are solved by using an analytical solution of Navier's technique. The present results and validations of our modal with literature are presented that permitted to demonstrate the accuracy of the present quasi-3D theory to predict the effect of variables elastic foundation on dynamics responses of advanced composite plates.

Free Vibrations of Curved Members Resting on Elastic Foundation with Continuity Effect (연속성을 갖는 탄성지반 위에 놓인 곡선부재의 자유진동)

  • 이병구;박광규;오상진;진태기
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.371-379
    • /
    • 2001
  • This paper deals with the free vibrations of horizontally curved members resting on elastic foundations with continuity effect. Taking into account the effects of rotatory inertia and shear deformation, differential equations governing the free vibrations of such beams are derived, in which the Pasternak foundation model is considered as the elastic foundation with continuity effect. The differential equations are solved numerically to calculate natural frequencies and mode shapes. The experiments were performed in which the natural frequencies of such curved beams in laboratorial scale were measured and these results agree quite well with the present numerical studies. In numerical examples, the circular, parabolic, sinusoidal and elliptic curved members with the hinged-hinged, hinged-clamped and clamped end constraints are considered. The parametric studies are conducted and the lowest four frequency parameters are reported in tables and figures as the non-dimensional forms. Also the typical mode shapes are presented.

  • PDF

Free vibration of functionally graded plates resting on elastic foundations based on quasi-3D hybrid-type higher order shear deformation theory

  • Zaoui, Fatima Zohra;Tounsi, Abdelouahed;Ouinas, Djamel
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.509-524
    • /
    • 2017
  • In this article, a free vibration analysis of functionally graded (FG) plates resting on elastic foundations is presented using a quasi-3D hybrid-type higher order shear deformation theory. Undetermined integral terms are employed in the proposed displacement field and modeled based on a hybrid-type (sinusoidal and parabolic) quasi-3D HSDT with five unknowns in which the stretching effect is taken into account. Thus, it can be said that the significant feature of this theory is that it deals with only 5 unknowns as the first order shear deformation theory (FSDT). The elastic foundation parameters are introduced in the present formulation by following the Pasternak (two-parameter) mathematical model. Equations of motion are obtained via the Hamilton's principles and solved using Navier's method. Accuracy of the proposed theory is confirmed by comparing the results of numerical examples with the ones available in literature.