• Title/Summary/Keyword: past climate change

Search Result 366, Processing Time 0.031 seconds

Future Runoff Characteristics of Ganwol Estuary Reservoir Watershed Based on SSP Scenarios (SSP 기후변화 시나리오에 따른 간월호 유역의 미래 유출특성 변화)

  • Kim, Sinae;Kim, Donghee;Kim, Seokhyeon;Hwang, Soonho;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.5
    • /
    • pp.25-35
    • /
    • 2023
  • The estuary reservoir is a major source of agricultural water in Korea; for effective and sustainable water resource management of the estuary reservoir, it is crucial to comprehensively consider various water resource factors, including water supply, flood, and pollutant management, and analyze future runoff changes in consideration of environmental changes such as climate change. The objective of this study is to estimate the impact of future climate change on the runoff characteristics of an estuary reservoir watershed. Climate data on future Shared Socioeconomic Pathway (SSP) scenarios were derived from two Global Climate Models (GCMs) of the Coupled Model Intercomparison Project phase 6 (CMIP6). The Hydrological Simulation Program-Fortran (HSPF) was used to simulate past and future long-term runoff of the Ganwol estuary reservoir watershed. The findings showed that as the impact of climate change intensified, the average annual runoff in the future period was higher in the order of SSP5, SSP3, SSP1, and SSP2, and the ratio of runoff in July decreased while the ratio of runoff in October increased. Moreover, in terms of river flow regime, the SSP2 scenario was found to be the most advantageous and the SSP3 scenario was the most disadvantageous. The findings of this study can be used as basic data for developing sustainable water resource management plans and can be applied to estuary reservoir models to predict future environmental changes in estuary reservoirs.

Future Changes of Wildfire Danger Variability and Their Relationship with Land and Atmospheric Interactions over East Asia Using Haines Index (Haines Index를 이용한 동아시아 지역 산불 확산 위험도 변화와 지표-대기 상호관계와의 연관성 연구)

  • Lee, Mina;Hong, Seungbum;Park, Seon Ki
    • Atmosphere
    • /
    • v.23 no.2
    • /
    • pp.131-141
    • /
    • 2013
  • Many studies have related the recent variations of wildfire regime such as the increasing number of occurrances, their patterns and timing changes, and the severity of their extreme cases with global warming. However, there are only a few numbers of wildfire studies to assess how the future wildfire regime will change in the interactions between land and atmosphere with climate change especially over East Asia. This study was performed to estimate the future changing aspect of wildfire danger with global warming, using Haines Index (HI). Calculated from atmospheric instability and dryness, HI is the potential of an existing fire to become a dangerous wildfire. Using the Weather Research and Forecasting (WRF) model, two separated 5-year simulations of current (1995~1999) and far future (2095~2099) were performed and analyzed. Community Climate System Model 3 (CCSM3) model outputs were utilized for the model inputs for the past and future over East Asia; future prediction was driven under the IPCC A1B scenario. The results indicate changes of the wildfire danger regime, showing overall decreasing the wildfire danger in the future but intensified regional deviations between north and south. The overall changes of the wildfire regime seems to stem from atmospheric dryness which is sensitive to soil moisture variation. In some locations, the future wildfire danger overall decreases in summer but increases in winter or fall when the actual fire occurrence are generally peaked especially in South China.

Improvement Method of Regional Insulation Standard through the Regional Heating Energy Demand Analysis (권역별 난방에너지 요구량 분석을 통한 단열기준 개선방안)

  • Kim, Jeong-Gook;Ahn, Byung-Lip;Jang, Cheol-Yong;Jeong, Hak-Geun;Haan, Chan-Hoon
    • KIEAE Journal
    • /
    • v.13 no.4
    • /
    • pp.43-48
    • /
    • 2013
  • The effect of climate change has influenced humanity and ecosystem with tremendous changes in temperature. For the past 150 years, the national annual average temperature is 0.6 degree increased and the heating degree day reduced from April to November. However, December to January, the climate change was generated and the heating degree day increased. The blackout occured in 2011 and 2012 by increasing electricity consumption of heating and cooling equipment to the effects of climate change. That is because heating load accounted for 20% of building electric use. In this study, strengthening measures to reduce heating energy consumption is presented due to climate change in winter since 1980 to prevent blackout and reliable power supply for the building energy-saving design standards by Meteorological data provided by the National Weather Service were calculated using the heating degree days in order to present eighteen cities from 1980 to 2012. Insulation standards are presented to prevent black-out by the heating degree days. the heating energy demand was reduced almost 6% including 10% in Central, 5% in South and Jeju area based on strengthening of the insulation. It is applied to the entire country an annual economic effect of 250 billion won, and black-out can be prevented.

Analysis of the abstracts of research articles in food related to climate change using a text-mining algorithm (텍스트 마이닝 기법을 활용한 기후변화관련 식품분야 논문초록 분석)

  • Bae, Kyu Yong;Park, Ju-Hyun;Kim, Jeong Seon;Lee, Yung-Seop
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1429-1437
    • /
    • 2013
  • Research articles in food related to climate change were analyzed by implementing a text-mining algorithm, which is one of nonstructural data analysis tools in big data analysis with a focus on frequencies of terms appearing in the abstracts. As a first step, a term-document matrix was established, followed by implementing a hierarchical clustering algorithm based on dissimilarities among the selected terms and expertise in the field to classify the documents under consideration into a few labeled groups. Through this research, we were able to find out important topics appearing in the field of food related to climate change and their trends over past years. It is expected that the results of the article can be utilized for future research to make systematic responses and adaptation to climate change.

Water Balance Change of Watershed by Climate Change (기후변화에 따른 유역의 물수지 변화)

  • Yang, Hea-Kun
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.3 s.120
    • /
    • pp.405-420
    • /
    • 2007
  • This study is intended to analyze and evaluate the effects of Seomjingang Dam and Soyanggang Dam Catchment on water circulation in order to examine water balance change of watershed by climate change. Obviously, air temperature and precipitation showed a gradually increasing trend for the past 30 years; evapotranspiration vary in areas and increasing annual average air temperature is not always proportional to increasing evapotranspiration. Based on Penman-FAO24, climatic water balance methods and measured values are shown to be significantly related with each other and to be available in Korea. It is certainly recognized that increasing annual rainfall volume leads to increasing annual runoff depth; for fluctuation in annual runoff rates, there are some difference in changes in measured values and calculated values. It is presumably early to determine that climate changes has a significant effect on runoff characteristic at dam catchment. It is widely known that climate changes are expected to cause many difficulties in water resources and disaster management. To take appropriate measures, deeper understanding is necessary for climatological conditions and variability of hydrology and to have more careful prospection and to accumulate highly reliable knowledge would be prerequisites for hydrometric network.

Status of Rice Paddy Field and Weather Anomaly in the Spring of 2015 in DPRK

  • Hong, Suk Young;Park, Hye-Jin;Jang, Keunchang;Na, Sang-Il;Baek, Shin-Chul;Lee, Kyung-Do;Ahn, Joong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.361-371
    • /
    • 2015
  • To understand the impact of 2015 spring drought on crop production of DPRK (Democratic People's Republic of Korea), we analyzed satellite and weather data to produce 2015 spring outlook of rice paddy field and rice growth in relation to weather anomaly. We defined anomaly of 2015 for weather and NDVI in comparison to past 5 year-average data. Weather anomaly layers for rainfall and mean temperature were calculated based on 27 weather station data. Rainfall in late April, early May, and late May in 2015 was much lower than those in average years. NDVI values as an indicator of rice growth in early June of 2015 was much lower than in 2014 and the average years. RapidEye and Radarsat-2 images were used to monitor status of rice paddy irrigation and transplanting. Due to rainfall shortage from late April to May, rice paddy irrigation was not favorable and rice planting was not progressed in large portion of paddy fields until early June near Pyongyang. Satellite images taken in late June showed rice paddy fields which were not irrigated until early June were flooded, assuming that rice was transplanted after rainfall in June. Weather and NDVI anomaly data in regular basis and timely acquired satellite data can be useful for grasping the crop and land status of DPRK, which is in high demand.

Changes in the Winter-Spring Center Timing over Upper Indus River Basin in Pakistan

  • Ali, Shahid;Kam, Jonghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.372-372
    • /
    • 2021
  • The agriculture sector plays a vital role in the economy of Pakistan by contributing about 20% of the GDP and 42% of the labor force. Rivers from the top of Himalayas are the major water resources for this agriculture sector. Recent reports have found that Pakistan is one of the most vulnerable country to climate change that can cause water scarcity which is a big challenge to the communities. Previous studies have investigated the impact of climate change on the trend of streamflow, but the understanding of seasonal change in the regional hydrologic regimes remained limited. Therefore, a better understanding of the seasonal hydrologic change will help cope with the future water scarcity issue. In this study, we used the daily stream flow data for four major river basins of Pakistan (Chenab, Indus, Jhelum and Kabul) over 1962 - 2019. Utilizing these daily river discharge data, we calculated the winter-spring center time and the summer-autumn center times. In this study Winter-spring center time (WSCT) is defined as the day of the calendar year during which half of the total six months (Jan-Jun) discharge volume was exceeded. Results show that the four river basins experienced a statistically significant decreasing trend of WSCT, that is the center time keeps coming earlier compared to the past. We further used the Climate Research Unit (CRU) climate data comprising of the average temperature and precipitation for the four basins and found that the increasing average temperature value causes the early melting of the snow covers and glaciers that resulted in the decreasing of 1st center time value by 4 to 8 days. The findings of this study informs an alarming situation for the agriculture sector specifically.

  • PDF

Estimation of Design Flood for the Gyeryong Reservoir Watershed based on RCP scenarios (RCP 시나리오에 따른 계룡저수지 유역의 설계홍수량 산정)

  • Ryu, Jeong Hoon;Kang, Moon Seong;Song, Inhong;Park, Jihoon;Song, Jung-Hun;Jun, Sang Min;Kim, Kyeung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.47-57
    • /
    • 2015
  • Along with climate change, the occurrence and severity of natural disasters have been increased globally. In particular, the increase of localized heavy rainfalls have caused severe flood damage. Thus, it is needed to consider climate change into the estimation of design flood, a principal design factor. The main objective of this study was to estimate design floods for an agricultural reservoir watershed based on the RCP (Representative Concentration Pathways) scenarios. Gyeryong Reservoir located in the Geum River watershed was selected as the study area. Precipitation data of the past 30 years (1981~2010; 1995s) were collected from the Daejeon meteorological station. Future precipitation data based on RCP2.6, 4.5, 6.0, 8.5 scenarios were also obtained and corrected their bias using the quantile mapping method. Probability rainfalls of 200-year frequency and PMPs were calculated for three different future spans, i.e. 2011~2040; 2025s, 2041~2070; 2055s, 2071~2100; 2085s. Design floods for different probability rainfalls were calculated using HEC-HMS. As the result, future probability rainfalls increased by 9.5 %, 7.8 % and 22.0 %, also design floods increased by 20.7 %, 5.0 % and 26.9 %, respectively, as compared to the past 1995s and tend to increase over those of 1995s. RCP4.5 scenario, especially, resulted in the greatest increase in design floods, 37.3 %, 36.5 % and 47.1 %, respectively, as compared to the past 1995s. The study findings are expected to be used as a basis to reduce damage caused by climate change and to establish adaptation policies in the future.

Past Vegetation of Moojaechi on Mt. Jungjok by Pollen Analysis (화분분석에 의한 정족산 무제치늪의 과거식생)

  • 박재근;장남기
    • The Korean Journal of Ecology
    • /
    • v.21 no.5_1
    • /
    • pp.427-433
    • /
    • 1998
  • The standing crop and net production were estimated in Moojaechi on Mt. Jungjok. By using the decay model of organic carbon, absolute year of bog peat was calculated. Pollen analysis to bog peat revealed vegetational history and climate change around Moojaechi. The time required for amount of the accumulated peat in the bog was estimated in terms of the balance of the accumulation and decay of organic carbon of the deposit peat. Absolute year of the peat surveyed in this study was about 314 years. Pollen of Pinus was predominant in all the pollen zone, Geamineae and Cyperaceae increased in lower pollen zone while Pinus in upper pollen zone. This showes that climate of the past was probably more humid than that of present. In addition, middle pollen zone showed warming trend which is suggested by high pollen concentration of Quercus, Juglans, Carpinus and Corylus. It suggests that overall environment and vegetation were changed from warmer and more humid to dry condition in Moojaechi and it is considered as the course of boggy ground formation by retrogressive successions.

  • PDF

Assessing hydrologic impact of climate change in Jeju Island using multiple GCMs and watershed modeling (다중 GCM과 유역모델링을 이용한 기후변화에 따른 제주도의 수문학적 영향 평가)

  • Kim, Chul Gyum;Cho, Jaepil;Kim, Nam Won
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • The climate change impacts on hydrological components and water balance in Jeju Island were evaluated using multiple climate models and watershed model, SWAT-K. To take into account the uncertainty of the future forecast data according to climate models, climate data of 9 GCMs were utilized as weather data of SWAT-K for future period (2010-2099). Using the modeling results of the past (1992-2013) and the future period, the hydrological changes of each year were analyzed and the precipitation, runoff, evapotranspiration and recharge were increasing. Compared with the past, the change in the runoff was the largest (up to 50% increase) and the evapotranspiration was relatively small (up to 11% increase). Monthly results show that the amount of evapotranspiration and the amount of recharge are greatly increased as the amount of precipitation increases in August and September, while the amount of evapotranspiration decreases in the same period. January and December showed the opposite tendency. As a result of analyzing future water balance changes, the ratio of runoff, evapotranspiration, and recharge to rainfall did not change much, but compared to the past, the runoff rate increased up to 4.3% in the RCP 8.5 scenario, while the evapotranspiration rate decreased by up to 3.5%. Based on the results of other researchers and this study, it is expected that rainfall and runoff will increase gradually in the future under the assumption of present climate change scenarios. Especially summer precipitation and runoff are expected to increase. As a result, the amount of groundwater recharge in Jeju Island will increase.