DOI QR코드

DOI QR Code

Future Changes of Wildfire Danger Variability and Their Relationship with Land and Atmospheric Interactions over East Asia Using Haines Index

Haines Index를 이용한 동아시아 지역 산불 확산 위험도 변화와 지표-대기 상호관계와의 연관성 연구

  • Lee, Mina (Center for Climate/Environment Change Prediction Research, Ewha Womans University) ;
  • Hong, Seungbum (Center for Climate/Environment Change Prediction Research, Ewha Womans University) ;
  • Park, Seon Ki (Center for Climate/Environment Change Prediction Research, Ewha Womans University)
  • 이미나 (이화여자대학교 기후환경변화예측연구센터) ;
  • 홍승범 (이화여자대학교 기후환경변화예측연구센터) ;
  • 박선기 (이화여자대학교 기후환경변화예측연구센터)
  • Received : 2012.12.12
  • Accepted : 2013.06.08
  • Published : 2013.06.30

Abstract

Many studies have related the recent variations of wildfire regime such as the increasing number of occurrances, their patterns and timing changes, and the severity of their extreme cases with global warming. However, there are only a few numbers of wildfire studies to assess how the future wildfire regime will change in the interactions between land and atmosphere with climate change especially over East Asia. This study was performed to estimate the future changing aspect of wildfire danger with global warming, using Haines Index (HI). Calculated from atmospheric instability and dryness, HI is the potential of an existing fire to become a dangerous wildfire. Using the Weather Research and Forecasting (WRF) model, two separated 5-year simulations of current (1995~1999) and far future (2095~2099) were performed and analyzed. Community Climate System Model 3 (CCSM3) model outputs were utilized for the model inputs for the past and future over East Asia; future prediction was driven under the IPCC A1B scenario. The results indicate changes of the wildfire danger regime, showing overall decreasing the wildfire danger in the future but intensified regional deviations between north and south. The overall changes of the wildfire regime seems to stem from atmospheric dryness which is sensitive to soil moisture variation. In some locations, the future wildfire danger overall decreases in summer but increases in winter or fall when the actual fire occurrence are generally peaked especially in South China.

Keywords

References

  1. Anderson, H. E., 1982: Aids to determining fuel models for estimating fire behavior. USDA Forest Service, General Technical Report INT-122.
  2. Brewer, M. C., C. F. Mass, and B. E. Potter, 2012: The west coast thermal through: Climatology and synoptic evolution. Mon. Wea. Rev., 140, 3820-3824, doi:10.1175/MWR-D-12-00078.1
  3. Chae, H. M., G. J. Um, and S.-Y. Lee, 2011: The vulnerability assessment of forest fire in Gangwon Province using CCGIS. Journal of Korean Society of Hazard Mitigation, 11(4), 123-130.
  4. Choi, G., J. Kim, and M.-S. Won, 2006: Spatial patterns and temporal variability of the Haines Index related to the wildland fire growth potential over the Korean Peninsula. Journal of the Korean Geographical Society, 41(2), 168-187.
  5. Coen, J. L., 2011: Some new basics of fire behavior. Fire Manage, Today, 71, 37-42.
  6. Coen, J. L., M. C. Cameron, J. Michalakes, E. G. Patton, P. J. Riggan, and K. M. Yedinak, 2013: WRF-Fire: coupled weather-wildland fire modeling with the Weather Research and Forecasting model. J. Appl. Meteor. Climatol., 52, 16-38, doi:10.1175/JAMC-D-12-023.1
  7. Donminguez Martin, S. and E. L. Garcia Diez, 2010: The singular role of the atmospheric stability in forest fires. Atmosfera, 23(2), 129-139.
  8. Gillett, N. P., A. J. Weaver, F. W. Zwiers, and M. D. Flannigan, 2004: Detecting the effect of climate change on Canadian forest fires. Geophys. Res. Lett., 31, L18211, doi:10.1029/2004GL020876
  9. Haines, D. A., 1988: A lower atmospheric severity index for wildland fire. National Weather Digest, 13, 2: 23-27
  10. Ichoku, C. R. Kahn, and M. Chin, 2012: Satellite contributions to the quantitative characterization of biomass burning for climate modeling. Atmos. Res., 111, 1-28, doi:10.1016/j.atmosres.2012.03.007
  11. Jenkins, M. A., 2002: A examination of the sensitivity of numerically simulated wildfires to low level atmospheric stability and moisture, and the consequences for the Haines Index, Int. J. Wildland Fire, 11(4): 213-232. https://doi.org/10.1071/WF02006
  12. Kasischke, E. S. and M. R. Turetsky, 2006: Recent changes in the fire regime across the North American boreal region - Spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett., 33, L09703, doi:10.1029/2006GL025677
  13. Korea Forest Service, 2001: Cause and effect of wildfire, http://sanfire.forest.go.kr/newkfsweb/html/HtmlPage. do?pg=/conser/conser_010301.html&mn=KFS_02_01 _03_01
  14. Lee, S.-Y, H.-S. Park, Y.-W. Kim, H.-Y. Yun, and J.-K. Kim, 2011: The studies on relationship between forest fire characteristics and weather phase in Jeollanam-do region. J. Agriculture & Life Science, 45(4): 29-35.
  15. Marlon, J. R, P. J. Bartlein, C. Carcaillet, D. G. Gavin, S. P.Harrison, P. E. Higuera, F. Joos, M. J. Power, and I. C. Prentice, 2008: Climate and human influences on global biomass burning over the past two millennia. Nature Geoscience, doi:10.1038/ngeo313
  16. National Wildfire Coordinating Group, 1994: Introduction to wildland fire behavior S-190. National Interagency Fire Center NFES 180, 66 pp.
  17. Petrenko, M., R. Kahn, M. Chin, A. Soja, T. Kucsera, and Harshvardhan, 2012: The use of satellite-measured aerosol optical depth to constrain biomass burning emissions source strength in the global model GOCART. J. Geophys. Res., 117, D18212, doi:10.1029/2012JD017870
  18. Potter, B. E. J. A. Winkler, D. F. Wilhelm, and R. P. Shadbolt, 2008: Computing the low-elevation variant of the Haines index for fire weather forecasts. Wea. Forecasting, 23, 159-167, doi:10.1175/2007WAF2007025.1
  19. Senici, D., H. Y. H. Chen, Y. Bergeron, and D. Cyr, 2010: Spatiotemporal variations of fire frequency in central boreal forest. Ecosystems, 13, 1227-1238, doi:10.1007/s10021-010-9383-9
  20. Sheffield, J., G. Goteti, F. Wen, and E. R. Wood, 2004: A simulated soil moisture based drought analysis for the United States. J. Geophys. Res., 109, D24018, doi:10.1029/2004JD005182
  21. Sung, M.-K., G.-H. Lim, E.-H. Choi, Y.-Y. Lee, M.-S. Won, and K.-S. Koo, 2010: Climate change over Korea and its relation to the forest fire occurrence. Atmosphere at Korean Meteorology Society, 20(1), 27-35.
  22. Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam, 2006: Warming and earlier spring increase Western U. S. forest wildfire activity. Science, 313, 940-943, doi:10.1126/science.1128834
  23. Winkler, J. A. B. E. Potter, D. F. Wilhelm, R. P. Shadbolt, K. Piromsopa, and X. Bian, 2007: Climatological and statistical characteristics of the Haines index for North America. Int. J. Wildland Fire, 16, 139-152. https://doi.org/10.1071/WF06086