• Title/Summary/Keyword: passive zone

Search Result 86, Processing Time 0.019 seconds

Strain Characteristics of Reinforcing materials in the transition zone of slopes (사면의 변이영역에서 보강재의 변형률 특성)

  • 김경태;장대수;장기태;한희수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.119-127
    • /
    • 2003
  • For the calculation of internal stability, the hypothesis in conventional design is on the basis of two distinct zones, which are‘active zone’and‘passive zone’. This means that there is an abrupt discontinuous transition from active to passive states across a potential failure line. The existence of a discontinuity of this nature appears physically unreasonable, especially from kinematic considerations. A series of pull-out model tests was undertaken from a wall being rotated about the toe to find the strain distribution mobilized from near the wall face into the deep, stable zone through the centre plane. With this finding of transition zone, the objective of study is aiming at identifying the likely effect of this zone in designing method by comparing with the prevailing design method.

  • PDF

Strain Distribution of transition zone in a nailed wall (네일로 보강된 구조물에서의 변이영역과 변형률 분포)

  • 장기태;남궁한;유병선;김경태;권병근;이선경
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11b
    • /
    • pp.235-239
    • /
    • 2000
  • For the calculation of internal stability, the hypothesis in conventional design is on the basis of two distinct zones, which are 'active zone' and 'passive zone'. This means that there is an abrupt discontinuous transition from active to passive states across a potential failure line. The existence of a discontinuity of this nature appears physically unreasonable, especially from kinematic considerations. A series of pull-out model tests was undertaken from a wall being rotated about the toe to find the strain distribution mobilized from near the wall face into the deep, stable zone through the centre plane. With this finding of transition zone, the objective of study is aiming at identifying the likely effect of this zone in designing method by comparing with the prevailing design method.

  • PDF

Strain Distribution of Transition Zone in a Nail Wall (네일로 보강된 구조물에서의 변이영역과 변형률 분포)

  • Chang, Ki-Tae;NamGung, Han;Yoo, Byung-Sun
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.1
    • /
    • pp.39-43
    • /
    • 2005
  • For the calculation of internal stability, the hypothesis in conventional design is on the basis of two distinct zones, which are 'active zone' and 'passive zone'. This means that there is an abrupt discontinuous transition from active to passive states across a potential failure line. The existence of a discontinuity of this nature appears physically unreasonable, especially from kinematic considerations. A series of pull-out model tests was undertaken from a wall being rotated about the toe to find the strain istribution mobilized from near the wall face into the deep, stable zone through the centre plane. With this finding of transition zone, the objective of study is aiming at identifying the likely effect of this zone in designing method by comparing with the prevailing design method.

  • PDF

The Study on the Corrosion Characteristics of STS 304 Pipeline Steel Weldment for Gas Cooling & Heating System (가스 냉온수기용 STS 304 배관 용접부의 부식특성에 관한 연구)

  • Kim, Hwan-Sik;Lim, Uh-Joh
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.2 s.35
    • /
    • pp.31-36
    • /
    • 2007
  • In order to study on the corrosion characteristics of STS 304 pipeline steel weldment for gas cooling & heating system. the electrochemical polarization test and corrosion test by impressed potential in 0.5M $H_2SO_4+0.01M$ KSCN solution was carried out. Also, SEM and hardness of welding zone was measured. And then passive behavior, corrosion behavior by the impressed potential and SEM aspect and hardness behavior of base metal(BM) and heat affected zone(HAZ) for STS 304 pipe were investigated. The main results are as follows: 1) The critical anodic current density of heat affected zone(HAZ) is drained more highly than that of base metal(BM), and primary passive potential of HAZ become higher than that of BM. 2) The passive current density of TUE is drained more highly than that of BM, and passive region of BM become bigger than that of HAZ. 3) By the impressed potential, the current density of HAZ is drained more than that of BM.

  • PDF

Effect of Green Buffer Zone in Reducing Gaseous Air Pollutants in the Shiwha Industrial Area (시화공단 완충녹지대의 대기오염물질 저감 효과 분석)

  • Song Young-Bae
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.6 s.113
    • /
    • pp.90-97
    • /
    • 2006
  • The effects of a green buffer zone to protect a residential area from air pollution from industrial facilities and traffic was examined by analyzing the case of a green buffer zone in the Shiwha industrial complex. The green buffer zone is 175 m wide. The intent was to assess the dispersion patterns of atmospheric air pollutants and the reduction in concentration around the green buffer zone. To measure atmospheric sulfur dioxide$(SO_2)$ and nitrogen dioxide$(NO_2)$ concentration, badge-type passive samplers were used and set up at 76 locations in order to measure the concentration of air pollutants with respect to the spatial dispersion. The weighted mean values of $SO_2\;and\;NO_2$ concentration were $3\~57 ppb\;and\;18\~62 ppb$ and the differences among the green buffer zone, the industrial area and the residential areas were $0.7\~1.1 ppb$. Mean values of atmospheric concentrations of $NO_2$ were similar in industrial and, residential areas and the green buffer zone. Results of the study show that the effect of the green buffer zone on reducing the dispersion of air pollutants was very low. This study also recommends that micro-climate, i.e., wind direction should be considered as a factor for planning and design of green buffer zones.

Effect of seismic acceleration directions on dynamic earth pressures in retaining structures

  • Nian, Ting-Kai;Liu, Bo;Han, Jie;Huang, Run-Qiu
    • Geomechanics and Engineering
    • /
    • v.7 no.3
    • /
    • pp.263-277
    • /
    • 2014
  • In the conventional design of retaining structures in a seismic zone, seismic inertia forces are commonly assumed to act upwards and towards the wall facing to cause a maximum active thrust or act upwards and towards the backfill to cause a minimum passive resistance. However, under certain circumstances this design approach might underestimate the dynamic active thrust or overestimate the dynamic passive resistance acting on a rigid retaining structure. In this study, a new analytical method for dynamic active and passive forces in c-${\phi}$ soils with an infinite slope was proposed based on the Rankine earth pressure theory and the Mohr-Coulomb yield criterion, to investigate the influence of seismic inertia force directions on the total active and passive forces. Four combinations of seismic acceleration with both vertical (upwards or downwards) and horizontal (towards the wall or backfill) directions, were considered. A series of dimensionless dynamic active and passive force charts were developed to evaluate the key influence factors, such as backfill inclination ${\beta}$, dimensionless cohesion $c/{\gamma}H$, friction angle ${\phi}$, horizontal and vertical seismic coefficients, $k _h$ and $k_v$. A comparative study shows that a combination of downward and towards-the-wall seismic inertia forces causes a maximum active thrust while a combination of upward and towards-the-wall seismic inertia forces causes a minimum passive resistance. This finding is recommended for use in the design of retaining structures in a seismic zone.

Study on Applicability of Passive Infrared Thermography Analysis for Blistering Detection of Stone Cultural Heritage (석조문화유산의 박리검출을 위한 수동적 적외선 열화상분석의 적용성 연구)

  • Jo, Young Hoon;Lee, Chan Hee;Yoo, Ji Hyun
    • Journal of Conservation Science
    • /
    • v.29 no.1
    • /
    • pp.55-67
    • /
    • 2013
  • This study focused on analysis condition and application method of the passive infrared thermography according to the direction and time to nondestructively detect the blistering zone of stone cultural heritage. As a result, the passive thermographic images showed different temperature characteristics by time because it sensitively reacts to air temperature, insolation and sunshine direction. In particular, the insolation and sunshine direction, which are periodically changed from 6:00 to 17:00, irregularly made surface temperature. In addition, surface temperature differences were brought on fresh zones and blistering zones except specific time since blistering causes erratic thermal transfer. As a result of examining the detection characteristics of blistering by time, the blistering was well detected between 9:00 and 10:00 when there was rapid increase in air temperature and insolation in all direction except the north. However, this study isn't considered effects of four seasons because it is carried out in autumn, and the passive thermography has difficulty to analyze the quantitative area of blistering zone. Therefore, an additional study for synthetic consideration of the passive thermography analysis about four seasons and quantitative modeling of blistering zone using the active thermography are needed.

Analysis of Sinkhole Formation over Abandoned Mine using Active-Passive-Active Finite Elements (폐광지역에서의 싱크홀 발생 규명을 위한 Active-Passive-Active 유한요소 기법 연구)

  • Deb Debasis;Shin Hee-Soon;Choi Sung O.
    • Tunnel and Underground Space
    • /
    • v.14 no.6 s.53
    • /
    • pp.411-422
    • /
    • 2004
  • Sinkhole subsidence occurs over abandoned mine workings and can be detrimental to human lives, damage to properties and other surface structures. In this study, simulation of sinkhole development process is performed using special finite element procedure. Especially, creation of mine voids due to roof falls and generation of goaf from broken rocks are simulated using active-passive-active finite elements. An active or solid element can be made passive or void once the tensile failure criterion is satisfied in the specified sinkhole formation zone. Upon completion of sinkhole development process, these passive elements in again be made active to simulate goal region. Several finite element models are analyzed to evaluate the relationships between sinkhole formation with width of gallery. depth of mine, roof condition and bulking factor of roof rocks. This study demonstrates that the concept of passive elements in numerical analysis can be used effectively for analyzing sinkhole formation or roof fall phenomenon in general.

Low Temperature Interface Modification: Electrochemical Dissolution Mechanism of Typical Iron and Nickel Base Alloys

  • Jiangwei Lu;Zhengyang Xu;Tianyu Geng
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.220-241
    • /
    • 2024
  • Due to its unique advantages, electrochemical machining (ECM) is playing an increasingly significant role in the manufacture of difficult-to-machine materials. Most of the current ECM research is conducted at room temperature, with studies on ECM in a cryogenic environment not having been reported to date. This study is focused on the electrochemical dissolution characteristics of typical iron and nickel base alloys in NaNO3 solution at low temperature (-10℃). The polarization behaviors and passive film properties were studied by various electrochemical test methods. The results indicated that a higher voltage is required for decomposition and more pronounced pitting of their structures occurs in the passive zone in a cryogenic environment. A more in-depth study of the composition and structure of the passive films by X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy showed that the passive films of the alloys are modified at low temperature, and their capacitance characteristics are more prominent, which makes corrosion of the alloys more likely to occur uniformly. These modified passive films have a huge impact on the surface morphologies of the alloys, with non-uniform corrosion suppressed and an improvement in their surface finish, indicating that lowering the temperature improves the localization of ECM. Together with the cryogenic impact of electron energy state compression, the accuracy of ECM can be further improved.

Numerical Computation of Bearing Capacity Factor $N_{\gamma}$ (지지력 계수 $N_{\gamma}$의 수치적 산정법)

  • Kim, Won-Cheul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.565-573
    • /
    • 2004
  • This study is to present explicit analytical expressions for calculating bearing capacity factor $N_{\gamma}$, to provide results of the numerical computation instead of the graphical method. In this study, $N_{\gamma}$ is proposed in the critical failure surface on assumption that the center of log spiral in the radial shear zone can be located at the any points of around footing. The critical failure surface is one which yields minimum passive pressure $P_{\gamma}$ on the radial shear zone from the family of log spirals accoding to change of the center of log spiral. This study adoptes Terzaghi's bearing capacity principle(e.g., Prandtl's mechanism, limit equilibrium equation, superposition principle) but the soil wedge in an elastic zone makes angle $45^{\circ}+{\phi}/2$ with the horizontal and the location of the log spiral's center.

  • PDF