• Title/Summary/Keyword: passive systems

Search Result 1,066, Processing Time 0.027 seconds

A Study on the Standard Patterns for the Application of Passive Solar Systems in Residential Buildings (자연형 태양열 단독주택 모범화 설계에 관한 연구)

  • Auh, P.C.M.;Lim, S.H.;Kang, D.H.;Jeon, H.S.
    • Solar Energy
    • /
    • v.8 no.1
    • /
    • pp.57-67
    • /
    • 1988
  • The task, development of the exemplary patterns for the application of passive solar systems in residential buildings, is very crucial regarding government policies toward energy conservation. So various measurements, evaluation, and feasibility studies are performed in addition to their architectural design and detailed drawings. In conclusion, passive solar systems are effective and economical when they are applied to residential buildings for heating systems.

  • PDF

Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event

  • Bucknor, Matthew;Grabaskas, David;Brunett, Acacia J.;Grelle, Austin
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.360-372
    • /
    • 2017
  • Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.

A new hybrid vibration control methodology using a combination of magnetostrictive and hard damping alloys

  • Buravalla, Vidyashankar R.;Bhattacharya, Bishakh
    • Smart Structures and Systems
    • /
    • v.3 no.4
    • /
    • pp.405-422
    • /
    • 2007
  • A new hybrid damping technique for vibration reduction in flexible structures, wherein a combination of layers of hard passive damping alloys and active (smart) magnetostrictive material is used to reduce vibrations, is proposed. While most conventional vibration control treatments are based exclusively on either passive or active based systems, this technique aims to combine the advantages of these systems and simultaneously, to overcome the inherent disadvantages in the individual systems. Two types of combined damping systems are idealized and studied here, viz., the Noninteractive system and the Interactive system. Frequency domain studies are carried out to investigate their performance. Finite element simulations using previously developed smart beam elements are carried out on typical metallic and laminated composite cantilever beams treated with hybrid damping. The influence of various parameters like excitation levels, frequency (mode) and control gain on the damping performance is investigated. It is shown that the proposed system could be used effectively to dampen the structural vibration over a wide frequency range. The interaction between the active and passive damping layers is brought out by a comparative study of the combined systems. Illustrative comparisons with 'only passive' and 'only active' damping schemes are also made. The influence and the mode dependence of control gain in a hybrid system is clearly illustrated. This study also demonstrates the significance and the exploitation of strain dependency of passive damping on the overall damping of the hybrid system. Further, the influence of the depthwise location of damping layers in laminated structures is also investigated.

An innovative hardware emulated simple passive semi-active controller for vibration control of MR dampers

  • Zhang, Jianqiu;Agrawal, Anil K.
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.831-846
    • /
    • 2015
  • Magneto-Rheological (MR) dampers are being used increasingly because of their adaptability to control algorithms and reliability of passive systems. In this paper, an extensive investigation on performance of MR dampers in semi-active and passive modes has been carried out. It is observed that the overall energy dissipation by MR dampers in passive-on modes is higher than that in semi-active modes for most of the competitive semi-active controllers. Based on the energy dissipation pattern, a novel semi-active controller, termed as "Simple Passive Semi-Active Controller", has been proposed for MR dampers. This controller can be emulated by a simple passive hardware proposed in this paper. The proposed concept of controller "hardware emulation" is innovative and can also be implemented for other semi-active devices for control algorithms of certain form. The effectiveness and reliability of the proposed controller has been investigated extensively through numerical simulations. It has been demonstrated that the proposed controller is competitive to or more effective than other widely used / investigated semi-active controllers.

Sliding Mode Control for a Robot Manipulator with Passive Joints

  • Kim, Won;Shin, Jin-Ho;Lee, Ju-Jang
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.78-83
    • /
    • 2002
  • In this paper, we propose a sliding mode controller for a robot manipulator with passive joints. A robot manipulator with passive joints which are not equipped with any actuators is a kind of underactuated system. Underactuated systems have some advantages compared to fully-actuated ones. For example, they weigh less and consume less energy because they have smaller number of components than fully-actuated ones. However the control of an underactuated manipulator is much more difficult than that of fully- actuated robot manipulator. In this paper a complex dynamic model of a manipulator with passive joints is manipulated for sliding mode control. Sliding mode controllers are designed for this complex system and the stability of the controllers is proved mathematically. Finally a simulation for this control system is executed for evaluating the effectiveness of the designed sliding mode controller.

Soft-Switching PWM Boost Chopper-Fed DC-DC Power Converter with Load Side Auxiliary Passive Resonant Snubber

  • Nakamura, Mantaro;Ogura, Koki;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.161-168
    • /
    • 2004
  • This paper presents a new circuit topology of high-frequency soft switching commutation boost type PWM chopper-fed DC-DC power converter with a loadside auxiliary passive resonant snubber. In the proposed boost type chopper-fed DC-DC power converter circuit operating under a principle of ZCS turn-on and ZVS turn-off commutation, the capacitor and inductor in the auxiliary passive resonant circuit works as the lossless resonant snubber. In addition to this, the voltage and current peak stresses of the power semiconductor devices as well as their di/dt or dv/dt dynamic stress can be effectively reduced by the single passive resonant snubber treated here. Moreover, it is proved that chopper-fed DC-DC power converter circuit topology with an auxiliary passive resonant snubber could solve some problems on the conventional boost type hard switching PWM chopper-fed DC-DC power converter. The simulation results of this converter are illustrated and discussed as compared with the experimental ones. The feasible effectiveness of this soft witching DC-DC power converter with a single passive resonant snubber is verified by the 5kW, 20kHz experimental breadboard set up to be built and tested for new energy utilization such as solar photovoltaic generators and fuel sell generators.

Protective systems for high-technology facilities against microvibration and earthquake

  • Yang, Jann N.;Agrawal, Anil K.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.6
    • /
    • pp.561-575
    • /
    • 2000
  • Microvibration of high technology facilities, such as semiconductor plants and facilities with high precision equipments, due to nearby road and rail traffic has attracted considerable attention recently. In this paper, a preliminary study is conducted for the possible use of various protective systems and their performance for the reduction of microvibration. Simulation results indicate that passive base isolation systems, hybrid base isolation systems, passive floor isolation systems, and hybrid floor isolation systems are quite effective and practical. In particular, the performances of hybrid floor isolation systems are remarkable. Further, passive energy dissipation systems are not effective for the reduction of microvibration. Finally, the protections against both microvibration and earthquake are also investigated and presented.

Design of Passive Treatment Systems for Mine Drainage Waters

  • Jeen, Sung-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.2
    • /
    • pp.1-9
    • /
    • 2017
  • Passive treatment systems are commonly used for remediation of mine drainage waters because they do not require continuous chemical inputs and operation. In this study, the selection and design criteria for such systems were evaluated, particularly the two most commonly used ones, i.e., permeable reactive barriers (PRBs) and vertical flow biological reactors (VFBRs). PRBs and VFBRs are operated on the same principles in terms of biochemical reaction mechanisms, whereas differences relate to configuration, engineering, and water management. In this study, each of these systems were described with respect to key design variables, such as metal removal mechanisms and removal rates, effectiveness and longevity, general design and construction, flow capacity, and cost. The information provided from this study could be used as a design guideline when a passive treatment option is considered for potential remediation of a mine site.

Decentralized Control of Cooperative Mobile Robot Systems Using Passive Velocity Field Control Method (수동 속도장 제어법을 이용한 협조 이동로봇 시스템의 분산제어)

  • 서진호;이권순
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.129-138
    • /
    • 2004
  • In this paper, we propose a method to apply a decentralized control algorithm for passive velocity field control using virtual flywheel system to cooperative 3-wheeled mobile robots, and these subsystem are under nonholonomic constraints. The considered robotic systems convey a common rigid object in a horizontal plain. Moreover we will proof the passivity and robustness for cooperative mobile robotic systems with decentralized passive velocity field control. Finally, The effectiveness of proposed control algorithm is examined by numerical simulation for cooperation tasks with 3-wheeled mobile robot systems.

Performance analysis of vehicle suspension systems with negative stiffness

  • Shi, Xiang;Shi, Wei;Xing, Lanchang
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.141-155
    • /
    • 2019
  • This work evaluates the influence of negative stiffness on the performances of various vehicle suspension systems, and proposes a re-centering negative stiffness device (NSD). The re-centering NSD consists of a passive magnetic negative stiffness spring and a positioning shaft with a re-centering function. The former produces negative stiffness control forces, and the latter prevents the amplification of static spring deflection. The numerical simulations reveal that negative stiffness can improve the ride comfort of a vehicle without affecting its road holding abilities for either passive or semi-active suspension systems. In general, the improvement degree of ride comfort increases as negative stiffness increases. For passive suspension system, negative stiffness brings in negative stiffness feature in the control forces, which is helpful for the ride comfort of a vehicle. For semi-active suspensions, negative stiffness can alleviate the impact of clipped damping in semi-active dampers, and thus the ride comfort of a vehicle can be improved.