• Title/Summary/Keyword: passive SONAR

Search Result 113, Processing Time 0.024 seconds

Performance of covariance matrix fitting-based direction-of-arrival estimation algorithm using compressed sensing in the frequency domain (주파수 영역에서 공분산 행렬 fitting 기반 압축센싱 도래각 추정 알고리즘의 성능)

  • Zhang, Xueyang;Paik, Ji Woong;Hong, Wooyoung;Ahn, Jae-Kyun;Kim, Seongil;Lee, Joon-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.6
    • /
    • pp.394-400
    • /
    • 2017
  • This paper shows the extension of SpSF (Sparse Spectrum Fitting) algorithm, which is one of covariance matrix fitting-based DOA (Direction-of-Arrival) estimation algorithms, from the time domain to the frequency domain, and presents that SpSF can be implemented in the frequency domain. The superiority of the SpSF algorithm has been demonstrated by comparing DOA estimation performance with the performance of Conventional DOA estimation algorithm in the frequency domain for sinusoidal incident signals.

Performance of direction-of-arrival estimation of SpSF in frequency domain: in case of non-uniform sensor array (주파수 영역으로 구현한 SpSF알고리듬: 비균일 센서 환경에서의 도래각 추정 성능)

  • Paik, Ji Woong;Zhang, Xueyang;Hong, Wooyoung;Hong, Jungpyo;Kim, Seongil;Lee, Joon-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.3
    • /
    • pp.191-199
    • /
    • 2020
  • Currently, studies on the estimation algorithm based on compressive sensing are actively underway, but to the best of our knowledge, no study on the performance of the Sparse Spectrum Fitting (SpSF) algorithm in nonuniform sensor arrays has been made. This paper deals with the derivation of the compressive sensing based covariance fitting algorithm extended to the frequency domain. In addition, it shows the performance of directon-of-arrival estimation of the frequency domain SpSF algorithm in non-uniform linear sensor array system and the sensor array failure situation.

SPICE Algorithm for Tone Signals in Frequency Domain (Tone 입사신호에 대한 주파수 영역 SPICE 알고리즘)

  • Zhang, Xueyang;Paik, Ji Woong;Hong, Wooyoung;Kim, Seongil;Lee, Joon-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.7
    • /
    • pp.560-565
    • /
    • 2018
  • The SPICE (Sparse Iterative Covariance-based Estimation) algorithm estimates the azimuth angle by applying a sparse recovery method to the covariance matrix in the time domain. In this paper, we show how the SPICE algorithm, which was originally formulated in the time domain, can be extended to the frequency domain. Furthermore, we demonstrate, through numerical results, that the performance of the proposed algorithm is superior to that of the conventional frequency domain algorithm.

Performance Analysis of FFTSA Method in the Water Environment Using Conformal Towed Acoustic Array (왜곡된 형태의 견인 음향 배열 기법을 적용한 수중환경하에서의 FFTSA 기법 성능분석)

  • 최주평;이원철
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.8
    • /
    • pp.44-57
    • /
    • 2001
  • This paper analyses the performance of FFTSA (Fast Fourier Transform Synthetic Aperture) in the effects of temporal coherence and oscillatory towed course, which is one of the techniques for passive synthetic aperture SONAR process using linearly distributed towed array. Also this paper proposes the FFTSA technique using towed array having conformal shape to alleviate the performance degradation for estimating the incident angle under inconsistent under water environments. And this paper analyses the performance of the proposed FFTSA technique making use of conformal structure throughout exhaustive computer simulations.

  • PDF

Detection of Signal Frequency Lines for Acoustic Target using Autoassociative Momory Neural Network (자동 연상 기억장치 신경망을 이용한 음향 표적의 신호 주파수선 탐지)

  • Lee, Sung-Eun;Hwang, Soo-Bok;Nam, Ki-Gon;Kim, Jae-Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.118-124
    • /
    • 1996
  • Signal frequency lines generated from the acoustic targets are of particular importance for target detection and classification in passive sonar systems. The underwater noise consists of a mixture of ambient noise and radiated noise of targets. Detction of exact signal frequency lines depends on signal detection threshold and variation of ambient noise. In this paper, a detection method of signal frequency lines for acoustic targets using autoassociative memory (ASM) neural network, which is not sensitive to variation of signal detection threshold and ambient noise, is proposed. It is confirmed by simulation and application of real acoustic targets that the proposed method shows good performance for detection of signal frequency lines.

  • PDF

New method development for position estimation of underground acoustic source using a passive SONAR system

  • Jarng, Soon-Suck;Lee, Je-Hyeong;Ahn, Heung-Gu;Park, Heun-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.149-152
    • /
    • 1999
  • The aim of the work described in this paper is to develop a complex underground acoustic system which detects and localizes the origin of an underground hammering sound using an array of hydrophones located about loom underground. Three different methods for the sound localization will be presented, a time-delay method, a power-attenuation method and a hybrid method. In the time-delay method, the cross correlation of the signals received from the way of sensors is used to calculate the time delays between those signals. In the power-attenuation method, the powers of the received signals provide a measure of the distances of the source from the sensors. In the hybrid method, both informations of time-delays and power-ratios are coupled together to produce better performance of position estimation. A new acoustic imaging technique has been developed for improving the hybrid method. For each method the sound localization is carried out in three dimensions underground. The minimum distance between the true and estimated origins of the source is 28 m for a search area of radius 250m.

  • PDF

Development of Submarine Acoustic Information Management System

  • Na Young-Nam;Kim Young-Gyu;Kim Seongil;Cho Chang Bong;Kim Hyung-Soo;Lee Yonggon;Lee Sung Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.2E
    • /
    • pp.46-53
    • /
    • 2005
  • Agency for Defense Development (ADD) developed the Submarine Acoustic Information Management System (SAIMS Version 1.0) capable of interfacing some submarine sensors in operation and predicting detection environments for sonars. The major design concepts are as follows: 1) A proper acoustic model is examined and optimized to cover wide spectra of frequency ranges for both active and passive sonars. 2) Interfacing the submarine sensors to an electric navigation chart, the system attempts to maximize the applicability of the information produced. 3) The state-of-the-art database in large area is built and managed on the system. 4) An algorithm, which is able to estimate a full sound speed profile from the limited oceanographic data, is developed and employed on the system. This paper briefly describes design concepts and algorithms embedded in the SAIMS. The applicability of the SAIMS was verified through three sea experiments in October 2003-February 2004.

A Study on the Localization using Passive RFID and Sonar for Mobile Robot In Indoor environment (실내 환경에서 RFID와 초음파를 이용한 이동로봇의 위치 추정에 관한 연구)

  • Jung, Ki-Ho;Jang, Chul-Woong;Kang, Shin-Hyuk;Lee, Dong-Kwang;Yeon, Mun-Jin;Jang, Mun-Suck;Kong, Jung-Shik;Kwon, Oh-Sang;Lee, Eung-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.331-332
    • /
    • 2007
  • In this paper we analyze whether recent Radio Frequence Identification technology can be used to improve the localization of mobile robot in their environment. This system make use of power control because Tag with Reader distance measurement. We are accurately the low at former time than the environment. A distance measurement is rather correct. This system used 900MHz Frequencies.

  • PDF

Batch Time Interval and Initial State Estimation using GMM-TS for Target Motion Analysis (GMM-TS를 이용한 표적기동분석용 배치구간 및 초기상태 추정 기법)

  • Kim, Woo-Chan;Song, Taek-Lyul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.285-294
    • /
    • 2012
  • Using bearing measurement only, target motion state is not directly obtained so that TMA (Target Motion Analysis) is needed for this situation. TMA is a nonlinear estimation technique used in passive SONAR systems. Also it is the one of important techniques for underwater combat management systems. TMA can be divided to two parts: batch estimation and sequential estimation. It is preferable to use sequential estimation for reducing computational load as well as adaptively to target maneuvers, batch estimation is still required to attain target initial state vector for convergence of sequential estimation. Selection of batch time interval which depends on observability is critical in TMA performance. Batch estimation in general utilizes predetermined batch time interval. In this paper, we propose a new method called the BTIS (Batch Time Interval and Initial State Estimation). The proposed BTIS estimates target initial status and determines the batch time interval sequentially by using a bank of GMM-TS (Gaussian Mixture Measurement-Track Splitting) filters. The performance of the proposal method is verified by a Monte Carlo simulation study.

A study on the sequential algorithm for simultaneous estimation of TDOA and FDOA (TDOA/FDOA 동시 추정을 위한 순차적 알고리즘에 관한 연구)

  • 김창성;김중규
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.7
    • /
    • pp.72-85
    • /
    • 1998
  • In this paper, we propose a new method that sequentially estimates TDOA(Time Delay Of Arrival) and FDOA(Frequency Delay Of Arrival) for extracting the information about the bearing and relative velocity of a target in passive radar or sonar arrays. The objective is to efficiently estimate the TDOA and FDOA between two sensor signal measurements, corrupted by correlated Gaussian noise sources in an unknown way. The proposed method utilizes the one dimensional slice function of the third order cumulants between the two sensor measurements, by which the effect of correlated Gaussian measurement noises can be significantly suppressed for the estimation of TDOA. Because the proposed sequential algoritjhm uses the one dimensional complex ambiguity function based on the TDOA estimate from the first step, the amount of computations needed for accurate estimationof FDOA can be dramatically reduced, especially for the cases where high frequency resolution is required. It is demonstrated that the proposed algorithm outperforms existing TDOA/FDOA estimation algorithms based on the ML(maximum likelihood) criterionandthe complex ambiguity function of the third order cumulant as well, in the MSE(mean squared error) sense and computational burden. Various numerical resutls on the detection probability, MSE and the floatingpoint computational burden are presented via Monte-Carlo simulations for different types of noises, different lengths of data, and different signal-to-noise ratios.

  • PDF