• 제목/요약/키워드: passivation effect

검색결과 219건 처리시간 0.024초

Rear Surface Passivation with Al2O3 Layer by Reactive Magnetron Sputtering for High-Efficiency Silicon Solar Cell

  • Moon, Sun-Woo;Kim, Eun-Kyeom;Park, Won-Woong;Jeon, Jun-Hong;Choi, Jin-Young;Kim, Dong-Hwan;Han, Seung-Hee
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.211-211
    • /
    • 2012
  • The electrical loss of the photo-generated carriers is dominated by the recombination at the metal- semiconductor interface. In order to enhance the performance of the solar cells, many studies have been performed on the surface treatment with passivation layer like SiN, SiO2, Al2O3, and a-Si:H. In this work, Al2O3 thin films were investigated to reduce recombination at surface. The Al2O3 thin films have two advantages, such as good passivation properties and back surface field (BSF) effect at rear surface. It is usually deposited by atomic layer deposition (ALD) technique. However, ALD process is a very expensive process and it has rather low deposition rate. In this study, the ICP-assisted reactive magnetron sputtering method was used to deposit Al2O3 thin films. For optimization of the properties of the Al2O3 thin film, various fabrication conditions were controlled, such as ICP RF power, substrate bias voltage and deposition temperature, and argon to oxygen ratio. Chemical states and atomic concentration ratio were analyzed by x-ray photoelectron spectroscopy (XPS). In order to investigate the electrical properties, Al/(Al2O3 or SiO2,/Al2O3)/Si (MIS) devices were fabricated and characterized using the C-V measurement technique (HP 4284A). The detailed characteristics of the Al2O3 passivation thin films manufactured by ICP-assisted reactive magnetron sputtering technique will be shown and discussed.

  • PDF

결정질 실리콘 태양전지 적용을 위한 ALD-Al2O3 패시베이션 막의 산화질화막 적층 특성 (Characteristics on Silicon Oxynitride Stack Layer of ALD-Al2O3 Passivation Layer for c-Si Solar Cell)

  • 조국현;조영준;장효식
    • 한국재료학회지
    • /
    • 제25권5호
    • /
    • pp.233-237
    • /
    • 2015
  • Silicon oxynitride that can be deposited two times faster than general SiNx:H layer was applied to fabricate the passivation protection layer of atomic layer deposition (ALD) $Al_2O_3$. The protection layer is deposited by plasma-enhanced chemical vapor deposition to protect $Al_2O_3$ passivation layer from a high temperature metallization process for contact firing in screen-printed silicon solar cell. In this study, we studied passivation performance of ALD $Al_2O_3$ film as functions of process temperature and RF plasma effect in plasma-enhanced chemical vapor deposition system. $Al_2O_3$/SiON stacks coated at $400^{\circ}C$ showed higher lifetime values in the as-stacked state. In contrast, a high quality $Al_2O_3$/SiON stack was obtained with a plasma power of 400 W and a capping-deposition temperature of $200^{\circ}C$ after the firing process. The best lifetime was achieved with stack films fired at $850^{\circ}C$. These results demonstrated the potential of the $Al_2O_3/SiON$ passivated layer for crystalline silicon solar cells.

단결정 실리콘 태양전지에서 후열처리에 따른 $Al_2O_3/Si$ 계면조직의 특성 변화 (Interfacial Microstructure and Electrical Properties of $Al_2O_3/Si$ Interface of Mono-crystalline Silicon Solar Cells)

  • 백신혜;김인섭;천주용;천희곤
    • 반도체디스플레이기술학회지
    • /
    • 제12권3호
    • /
    • pp.41-46
    • /
    • 2013
  • Efficient and inexpensive solar cells are necessary for photo-voltaic to be widely adopted for mainstream electricity generation. For this to occur, the recombination losses of charge carriers (i.e. electrons or holes) must be minimized using a surface passivation technique suitable for manufacturing. Recently it has been shown that aluminum oxide thin films are negatively charged dielectrics that provide excellent surface passivation of silicon solar cells to attract positive-charged holes. Especially aluminum oxide thin film is a quite suitable passivation on the rear side of p-type silicon solar cells. This paper, it demonstrate the interfacial microstructure and electrical properties of mono-crystalline silicon surface passivated by $Al_2O_3$ films during firing process as applied for screen-printed solar cells. The first task is a comparison of the interfacial microstructure and chemical bonds of PECVD $Al_2O_3$ and of PEALD $Al_2O_3$ films for the surface passivation of silicon. The second is to study electrical properties of double-stacked layers of PEALD $Al_2O_3$/PECVD SiN films after firing process in the temperature range of $650{\sim}950^{\circ}C$.

산화구리의 광전기화학적 거동 특성 (Photoelectrochemical Behavior of Cu2O and Its Passivation Effect)

  • 윤홍관;홍순현;김도진;김천중
    • 한국재료학회지
    • /
    • 제29권1호
    • /
    • pp.1-6
    • /
    • 2019
  • Recent industrialization has led to a high demand for the use of fossil fuels. Therefore, the need for producing hydrogen and its utilization is essential for a sustainable society. For an eco-friendly future technology, photoelectrochemical water splitting using solar energy has proven promising amongst many other candidates. With this technique, semiconductors can be used as photocatalysts to generate electrons by light absorption, resulting in the reduction of hydrogen ions. The photocatalysts must be chemically stable, economically inexpensive and be able to utilize a wide range of light. From this perspective, cuprous oxide($Cu_2O$) is a promising p-type semiconductor because of its appropriate band gap. However, a major hindrance to the use of $Cu_2O$ is its instability at the potential in which hydrogen ion is reduced. In this study, gold is used as a bottom electrode during electrodeposition to obtain a preferential growth along the (111) plane of $Cu_2O$ while imperfections of the $Cu_2O$ thin films are removed. This study investigates the photoelectrochemical properties of $Cu_2O$. However, severe photo-induced corrosion impedes the use of $Cu_2O$ as a photoelectrode. Two candidates, $TiO_2$ and $SnO_2$, are selected for the passivation layer on $Cu_2O$ by by considering the Pourbaix-diagram. $TiO_2$ and $SnO_2$ passivation layers are deposited by atomic layer deposition(ALD) and a sputtering process, respectively. The investigation of the photoelectrochemical properties confirmed that $SnO_2$ is a good passivation layer for $Cu_2O$.

기판 세정특성에 따른 표면 패시배이션 및 a-Si:H/c-Si 이종접합 태양전지 특성변화 분석 (Effect of Cleaning Processes of Silicon Wafer on Surface Passivation and a-Si:H/c-Si Hetero-Junction Solar Cell Performances)

  • 송준용;정대영;김찬석;박상현;조준식;송진수;왕진석;이정철
    • 한국재료학회지
    • /
    • 제20권4호
    • /
    • pp.210-216
    • /
    • 2010
  • This paper investigates the dependence of a-Si:H/c-Si passivation and heterojunction solar cell performances on various cleaning processes of silicon wafers. It is observed that the passivation quality of a-Si:H thin-films on c-Si wafers depends highly on the initial H-termination properties of the wafer surface. The effective minority carrier lifetime (MCLT) of highly H-terminated wafer is beneficial for obtaining high quality passivation of a-Si:H/c-Si. The wafers passivated by p(n)-doped a-Si:H layers have low MCLT regardless of the initial H-termination quality. On the other hand, the MCLT of wafers incorporating intrinsic (i) a-Si:H as a passivation layer shows sensitive variation with initial cleaning and H-termination schemes. By applying the improved cleaning processes, we can obtain an MCLT of $100{\mu}sec$ after H-termination and above $600{\mu}sec$ after i a-Si:H thin film deposition. By adapting improved cleaning processes and by improving passivation and doped layers, we can fabricate a-Si:H/c-Si heterojunction solar cells with an active area conversion efficiency of 18.42%, which cells have an open circuit voltage of 0.670V, short circuit current of $37.31\;mA/cm^2$ and fill factor of 0.7374. These cells show more than 20% pseudo efficiency measured by Suns-$V_{oc}$ with an elimination of series resistance.

마이크로미터 크기의 유기 전계 효과 트랜지스터 제작 (Fabrication of Micron-sized Organic Field Effect Transistors)

  • 박성찬;허정환;김규태;하정숙
    • 한국진공학회지
    • /
    • 제20권1호
    • /
    • pp.63-69
    • /
    • 2011
  • 본 연구에서는 기존 실리콘 반도체 기술 기반의 포토 및 이빔 리소그래피 공정을 통하여 유기 반도체 소자를 패터닝하였다. P3HT나 PEDOT 등의 유기 반도체는 용매에 녹기 때문에 MIMIC (micro-molding in capillaries)이나 inkjet printing 기술을 이용하여 마이크로미터 크기의 소자 제작이 가능하였으나, 펜타신은 용매에 녹지 않기 때문에 매우 복잡한 방법으로 마이크로미터 크기의 소자를 제작하여왔다. 그러나, 본 연구에서는 원자층 증착 방법으로 증착한 산화 알루미늄막을 펜타신의 보호층으로 이용하여 기존의 포토 및 이빔 리소그래피 방법으로 마이크로미터크기의 펜타신 소자를 제작하였으며 그 전기 특성을 확인하였다.

Synergistic Effect of Nitrogen and Molybdenum on Localized Corrosion of Stainless Steels

  • Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • 제9권1호
    • /
    • pp.20-28
    • /
    • 2010
  • According to the bipolar model, ion selectivity of some species in the passive film is important factor to control the passivation. An increase of cation selectivity of outer layer of the passive film can stabilize the film and improves the corrosion resistance. Therefore, the formation and roles of ionic species in the passive film should be elucidated. In this work, two types of solution (hydrochloric or sulfuric acid) were used to test high N and Mo-bearing stainless steels. The objective of this work was to investigate the formation of oxyanions in the passive film and the roles of oxyanions in passivation of stainless steel. Nitrogen exists as atomic nitrogen, nitric oxide, nitro-oxyanions (${NO_x}^-$), and N-H species, not nitride in the passive film. Because of its high mobility, the enriched atomic nitrogen can act as a reservoir. The formation of N-H species buffers the film pH and facilitates the formation of oxyanions in the film. ${NO_x}^-$ species improve the cation selectivity of the film, increasing the oxide content and film density. ${NO_x}^-$ acts similar to a strong inhibitor both in the passive film and at active sites. This facilitates the formation of chromium oxide. Also, ${NO_x}^-$ can make more molybdate and nitric oxide by reacting with Mo. The role of Mo addition on the passivation characteristics of stainless steel may differ with the test environment. Mo exists as metallic molybdenum, molybdenum oxide, and molybdate and the latter facilitates the oxide formation. When nitrogen and molybdenum coexist in stainless steel, corrosion resistance in chloride solutions is drastically increased. This synergistic effect of N and Mo in a chloride solution is mainly due to the formation of nitro-oxyanions and molybdate ion. Oxyanions can be formed by a 'solid state reaction' in the passive film, resulting in the formation of more molybdate and nitric oxide. These oxyanions improve the cation selectivity of the outer layer and form more oxide and increase the amount of chromium oxide and the ratio of $Cr_2O_3/Cr(OH)_3$ and make the film stable and dense.

Borate 완충용액에서 코발트의 부식에 대한 대류와 산소의 영향 (Hydrodynamic and Oxygen Effects on Corrosion of Cobalt in Borate Buffer Solution)

  • 김연규
    • 대한화학회지
    • /
    • 제58권5호
    • /
    • pp.437-444
    • /
    • 2014
  • 변전위법과 전기화학적 임피던스측정법(electrochemical impedence spectroscopy)을 이용하여 borate 완충용액에서 Co-RDE의 전기화학적 부식과 부동화에 대하여 조사하였다. Tafel 기울기, 코발트 회전원판전극의 회전속도, 임피던스 그리고 부식전위와 부식전류의 pH 의존성으로부터 코발트의 부식과 부동화 반응 메커니즘과 환원반응에서의 수소 발생 반응구조를 제안하였다. EIS data로부터 등가회로를 제안하였으며 산화반응의 영역별로 전기화학적 변수들을 측정하였다. 부식전위에서 측정된 Nyquist plot의 induction loop가 낮은 주파수 영역에서 관측되는 것으로 보아 흡착/탈착 현상이 Co의 부식과정에 영향을 미치는 것으로 보인다.