• Title/Summary/Keyword: partitioning approach

Search Result 160, Processing Time 0.028 seconds

Water Distribution Network Partitioning Based on Community Detection Algorithm and Multiple-Criteria Decision Analysis

  • Bui, Xuan-Khoa;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.115-115
    • /
    • 2020
  • Water network partitioning (WNP) is an initiative technique to divide the original water distribution network (WDN) into several sub-networks with only sparse connections between them called, District Metered Areas (DMAs). Operating and managing (O&M) WDN through DMAs is bringing many advantages, such as quantification and detection of water leakage, uniform pressure management, isolation from chemical contamination. The research of WNP recently has been highlighted by applying different methods for dividing a network into a specified number of DMAs. However, it is an open question on how to determine the optimal number of DMAs for a given network. In this study, we present a method to divide an original WDN into DMAs (called Clustering) based on community structure algorithm for auto-creation of suitable DMAs. To that aim, many hydraulic properties are taken into consideration to form the appropriate DMAs, in which each DMA is controlled as uniform as possible in terms of pressure, elevation, and water demand. In a second phase, called Sectorization, the flow meters and control valves are optimally placed to divide the DMAs, while minimizing the pressure reduction. To comprehensively evaluate the WNP performance and determine optimal number of DMAs for given WDN, we apply the framework of multiple-criteria decision analysis. The proposed method is demonstrated using a real-life benchmark network and obtained permissible results. The approach is a decision-support scheme for water utilities to make optimal decisions when designing the DMAs of their WDNs.

  • PDF

Enhanced Graph-Based Method in Spectral Partitioning Segmentation using Homogenous Optimum Cut Algorithm with Boundary Segmentation

  • S. Syed Ibrahim;G. Ravi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.61-70
    • /
    • 2023
  • Image segmentation is a very crucial step in effective digital image processing. In the past decade, several research contributions were given related to this field. However, a general segmentation algorithm suitable for various applications is still challenging. Among several image segmentation approaches, graph-based approach has gained popularity due to its basic ability which reflects global image properties. This paper proposes a methodology to partition the image with its pixel, region and texture along with its intensity. To make segmentation faster in large images, it is processed in parallel among several CPUs. A way to achieve this is to split images into tiles that are independently processed. However, regions overlapping the tile border are split or lost when the minimum size requirements of the segmentation algorithm are not met. Here the contributions are made to segment the image on the basis of its pixel using min-cut/max-flow algorithm along with edge-based segmentation of the image. To segment on the basis of the region using a homogenous optimum cut algorithm with boundary segmentation. On the basis of texture, the object type using spectral partitioning technique is identified which also minimizes the graph cut value.

An efficient vehicle route search with time varying vehicle speed (속도 정보를 이용한 효율적 차량경로의 탐색)

  • Mun, Gi-Ju;Yang, Seung-Man
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.660-663
    • /
    • 2004
  • The vehicle routing problem with time-varying speed(VRPTVS) is difficult to handle with regular problem solving approaches. An approach by partitioning the service zone into three sub-zones to reduce computing time and vehicle traveling distance is suggested in this paper. To develop a partitioning algorithm for VRPTVS, all customer locations are divided into two sections such as morning zone and evening zone, excluding daytime zone. And then each service zone is calculated to find a possible number of delivery points and chosen by time window having more number of possible delivery points by considering customer location and varying speeds. A temporary complete route that can serve all target points is developed by this procedure and a pairwise exchange method is applied to reduce the traveling time.

  • PDF

Global Optimization of Clusters in Gene Expression Data of DNA Microarrays by Deterministic Annealing

  • Lee, Kwon Moo;Chung, Tae Su;Kim, Ju Han
    • Genomics & Informatics
    • /
    • v.1 no.1
    • /
    • pp.20-24
    • /
    • 2003
  • The analysis of DNA microarry data is one of the most important things for functional genomics research. The matrix representation of microarray data and its successive 'optimal' incisional hyperplanes is a useful platform for developing optimization algorithms to determine the optimal partitioning of pairwise proximity matrix representing completely connected and weighted graph. We developed Deterministic Annealing (DA) approach to determine the successive optimal binary partitioning. DA algorithm demonstrated good performance with the ability to find the 'globally optimal' binary partitions. In addition, the objects that have not been clustered at small non­zero temperature, are considered to be very sensitive to even small randomness, and can be used to estimate the reliability of the clustering.

Hopfield Network for Partitioning of Field of View (FOV 분할을 위한 Hopfield Network)

  • Cha, Young-Youp
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.120-125
    • /
    • 2002
  • An optimization approach is used to partition the field of view. A cost function is defined to represent the constraints on the solution, which is then mapped onto a two-dimensional Hopfield neural network for minimization. Each neuron in the network represents a possible match between a field of view and one or multiple objects. Partition is achieved by initializing each neuron that represents a possible match and then allowing the network to settle down into a stable state. The network uses the initial inputs and the compatibility measures between a field of view and one or multiple objects to find a stable state.

K-Way Graph Partitioning: A Semidefinite Programming Approach (Semidefinite Programming을 통한 그래프의 동시 분할법)

  • Jaehwan, Kim;Seungjin, Choi;Sung-Yang, Bang
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.697-699
    • /
    • 2004
  • Despite many successful spectral clustering algorithm (based on the spectral decomposition of Laplacian(1) or stochastic matrix(2) ) there are several unsolved problems. Most spectral clustering Problems are based on the normalized of algorithm(3) . are close to the classical graph paritioning problem which is NP-hard problem. To get good solution in polynomial time. it needs to establish its convex form by using relaxation. In this paper, we apply a novel optimization technique. semidefinite programming(SDP). to the unsupervised clustering Problem. and present a new multiple Partitioning method. Experimental results confirm that the Proposed method improves the clustering performance. especially in the Problem of being mixed with non-compact clusters compared to the previous multiple spectral clustering methods.

  • PDF

Clustering Data with Categorical Attributes Using Inter-dimensional Association Rules and Hypergraph Partitioning (차원간 연관관계와 하이퍼그래프 분할법을 이용한 범주형 속성을 가진 데이터의 클러스터링)

  • 이성기;윤덕균
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.65
    • /
    • pp.41-50
    • /
    • 2001
  • Clustering in data mining is a discovery process that groups a set of data such that the intracluster similarity is maximized and intercluster similarity is minimized. The discovered clusters from clustering process are used to explain the characteristics of the data distribution. In this paper we propose a new methodology for clustering related transactions with categorical attributes. Our approach starts with transforming general relational databases into a transactional databases. We make use of inter-dimensional association rules for composing hypergraph edges, and a hypergraph partitioning algorithm for clustering the values of attributes. The clusters of the values of attributes are used to find the clusters of transactions. The suggested procedure can enhance the interpretation of resulting clusters with allocated attribute values.

  • PDF

Two-phases Hybrid Approaches and Partitioning Strategy to Solve Dynamic Commercial Fleet Management Problem Using Real-time Information (실시간 정보기반 동적 화물차량 운용문제의 2단계 하이브리드 해법과 Partitioning Strategy)

  • Kim, Yong-Jin
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.2 s.73
    • /
    • pp.145-154
    • /
    • 2004
  • The growing demand for customer-responsive, made-to-order manufacturing is stimulating the need for improved dynamic decision-making processes in commercial fleet operations. Moreover, the rapid growth of electronic commerce through the internet is also requiring advanced and precise real-time operation of vehicle fleets. Accompanying these demand side developments/pressures, the growing availability of technologies such as AVL(Automatic Vehicle Location) systems and continuous two-way communication devices is driving developments on the supply side. These technologies enable the dispatcher to identify the current location of trucks and to communicate with drivers in real time affording the carrier fleet dispatcher the opportunity to dynamically respond to changes in demand, driver and vehicle availability, as well as traffic network conditions. This research investigates key aspects of real time dynamic routing and scheduling problems in fleet operation particularly in a truckload pickup-and-delivery problem under various settings, in which information of stochastic demands is revealed on a continuous basis, i.e., as the scheduled routes are executed. The most promising solution strategies for dealing with this real-time problem are analyzed and integrated. Furthermore, this research develops. analyzes, and implements hybrid algorithms for solving them, which combine fast local heuristic approach with an optimization-based approach. In addition, various partitioning algorithms being able to deal with large fleet of vehicles are developed based on 'divided & conquer' technique. Simulation experiments are developed and conducted to evaluate the performance of these algorithms.

A Cable Layout Plan for a CATV System

  • 차동완;윤문길
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1991.10a
    • /
    • pp.464-464
    • /
    • 1991
  • We address the problem of designing a physical CATV network with switched-star topology in which the broadband interactive service is provided. There are two types of decision variables: One is where to place conduit paths, and the other is how many cable units to be installed on each link traversed by an established conduit path. Due to the serious drawback of the conventional approach partitioning the problem into two subproblems, the unified approach handled in one setting is used here to attack the whole problem without dividing into two ones. In this paper, we present a mathematical design model and propose an efficient solution method exploiting the nice structure of it. In addition to this physical design, some results on logical network configuration have also been made. Finally, computaional experiments are conducted to illustrate the efficiency of our design approach.

  • PDF

A $200-MHz{\circled}a2.5-V$ Dual-Mode Multiplier for Single/Double-Precision Multiplications (단정도/배정도 승산을 위한 $200-MHz{\circled}a2.5-V$ 이중 모드 승산기)

  • 이종남;박종화;신경욱
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.149-152
    • /
    • 2000
  • A dual-mode multiplier (DMM) that performs single- and double-precision multiplications has been designed. An algorithm for efficiently implementing double-precision multiplication with a single-precision multiplier was proposed, which is based on partitioning double-precision multiplication into four single-precision sub-multiplications and computing them with sequential accumulations. When compared with conventional double-precision multipliers, our approach reduces the hardware complexity by about one third resulting in small silicon area and low-power dissipation at the expense of increased latency and throughput cycles.

  • PDF