• Title/Summary/Keyword: partitioning approach

Search Result 160, Processing Time 0.02 seconds

Iterative mesh partitioning strategy for improving the efficiency of parallel substructure finite element computations

  • Hsieh, Shang-Hsien;Yang, Yuan-Sen;Tsai, Po-Liang
    • Structural Engineering and Mechanics
    • /
    • v.14 no.1
    • /
    • pp.57-70
    • /
    • 2002
  • This work presents an iterative mesh partitioning approach to improve the efficiency of parallel substructure finite element computations. The proposed approach employs an iterative strategy with a set of empirical rules derived from the results of numerical experiments on a number of different finite element meshes. The proposed approach also utilizes state-of-the-art partitioning techniques in its iterative partitioning kernel, a cost function to estimate the computational cost of each submesh, and a mechanism that adjusts element weights to redistribute elements among submeshes during iterative partitioning to partition a mesh into submeshes (or substructures) with balanced computational workloads. In addition, actual parallel finite element structural analyses on several test examples are presented to demonstrate the effectiveness of the approach proposed herein. The results show that the proposed approach can effectively improve the efficiency of parallel substructure finite element computations.

New energy partitioning method in essential work of fracture (EWF) concept for 3-D printed pristine/recycled HDPE blends

  • Sukjoon Na;Ahmet Oruc;Claire Fulks;Travis Adams;Dal Hyung Kim;Sanghoon Lee;Sungmin Youn
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • This study explores a new energy partitioning approach to determine the fracture toughness of 3-D printed pristine/recycled high density polyethylene (HDPE) blends employing the essential work of fracture (EWF) concept. The traditional EWF approach conducts a uniaxial tensile test with double-edge notched tensile (DENT) specimens and measures the total energy defined by the area under a load-displacement curve until failure. The approach assumes that the entire total energy contributes to the fracture process only. This assumption is generally true for extruded polymers that fracture occurs in a material body. In contrast to the traditional extrusion manufacturing process, the current 3-D printing technique employs fused deposition modeling (FDM) that produces layer-by-layer structured specimens. This type of specimen tends to include separation energy even after the complete failure of specimens when the fracture test is conducted. The separation is not relevant to the fracture process, and the raw experimental data are likely to possess random variation or noise during fracture testing. Therefore, the current EWF approach may not be suitable for the fracture characterization of 3-D printed specimens. This paper proposed a new energy partitioning approach to exclude the irrelevant energy of the specimens caused by their intrinsic structural issues. The approach determined the energy partitioning location based on experimental data and observations. Results prove that the new approach provided more consistent results with a higher coefficient of correlation.

BTEX와 액상간 분배성 알코올류 추적자의 분배특성 연구

  • Lee Seong-Su;Ju Sang-Yeon;Park Jun-Beom
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.115-118
    • /
    • 2006
  • The partitioning tracer method has been studied as an alternative method for characterizing aquifers contaminated by nonaqueous phase liquids (NAPLs). Accurate partition coefficients of tracers partitioning between NAPL and water are needed to improve the reliability of the partitioning tracer method. In this research, partition coefficients of alcohol tracers partitioning between benzene, toluene, ethylbenzene, and xylenes (BTEX) compounds and water are estimated from using the approach of equivalent alkane carbon number (EACN). General agreement was observed in between the measured and estimated partition coefficients. Based on these results we can verify that the EACN approach is suitable for estimating the partition coefficient.

  • PDF

Novel Partitioning Algorithm for a Gaussian Inverse Wishart PHD Filter for Extended Target Tracking

  • Li, Peng;Ge, Hongwei;Yang, Jinlong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5491-5505
    • /
    • 2017
  • Use of the Gaussian inverse Wishart PHD (GIW-PHD) filter has demonstrated promise as an approach to track an unknown number of extended targets. However, the partitioning approaches used in the GIW-PHD filter, such as distance partition with sub-partition (DP-SP), prediction partition (PP) and expectation maximization partition (EMP), fails to provided accurate partition results when targets are spaced closely together and performing maneuvers. In order to improve the performance of a GIW-PHD filter, this paper presents a cooperation partitioning (CP) algorithm to solve the partitioning issue when targets are spaced closely together. In the GIW-PHD filter, the DP-SP is insensitive to target maneuvers but sensitive to the differences in target sizes, while EMP is the opposite. The proposed CP algorithm is a fusion approach of DP-SP and EMP, which employs EMP as a sub-partition approach after DP. Therefore, the CP algorithm will be sensitive to neither target maneuvers nor differences in target sizes. The simulation results show that the use of the proposed CP algorithm will improve the performance of the GIW-PHD filter when targets are spaced closely together.

Application of Equilibrium Partitioning Approach for the Assessment of Polychlorinated Biphenyls (PCBs) Contamination in Sediments from Kyeonggi Bay, Namyang Bay, and Lake Shihwa, West Coast of Korea

  • Lee, Kyu-Tae;Tanabe, Shinsuke;Koh, Chul-Hwan
    • Journal of the korean society of oceanography
    • /
    • v.34 no.1
    • /
    • pp.36-42
    • /
    • 1999
  • To assess present status of polychlorinated biphenyls (PCBs) contamination in Kyeonggi Bay, Namyang Bay, and Lake Shihwa, 63 sediment samples were analyzed and applied to equilibrium partitioning approach. Sediment quality criteria (SQC) for exposure to Kanechlor mixture (KC-mix) was calculated as a value of 16 ${\mu}$g/g-organic carbon (OC). Two sites (Sites Kl8 and Kl9) within Incheon North Harbor (INH) with total PCBs concentrations 48 and 38 ${\mu}$g/g-OC, respectively, exceeded SQC, indicating a potential of adverse biological effects. The advantage and disadvantage of equilibrium partitioning approach has been discussed.

  • PDF

Thermodynamic Study of Sequential Chlorination for Spent Fuel Partitioning

  • Jinmok Hur;Yung-Zun Cho;Chang Hwa Lee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.397-410
    • /
    • 2023
  • This study examined the efficacy of various chlorinating agents in partitioning light water reactor spent fuel, with the aim of optimizing the chlorination process. Through thermodynamic equilibrium calculations, we assessed the outcomes of employing MgCl2, NH4Cl, and Cl2 as chlorinating agents. A comparison was drawn between using a single agent and a sequential approach involving all three agents (MgCl2, NH4Cl, and Cl2). Following heat treatment, the utilization of MgCl2 as the sole chlorinating agent resulted in a moderate separation. Specifically, this method yielded a solid separation with 96.9% mass retention, 31.7% radioactivity, and 44.2% decay heat, relative to the initial spent fuel. In contrast, the sequential application of the chlorinating agents following heat treatment led to a final solid separation characterized by 93.1% mass retention, 5.1% radioactivity, and 15.4% decay heat, relative to the original spent fuel. The findings underscore the potential effectiveness of a sequential chlorination strategy for partitioning spent fuel. This approach holds promise as a standalone technique or as a complementary process alongside other partitioning processes such as pyroprocessing. Overall, our findings contribute to the advancement of spent fuel management strategies.

Speaker Change Detection Based on a Graph-Partitioning Criterion

  • Seo, Jin-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.80-85
    • /
    • 2011
  • Speaker change detection involves the identification of time indices of an audio stream, where the identity of the speaker changes. In this paper, we propose novel measures for the speaker change detection based on a graph-partitioning criterion over the pairwise distance matrix of feature-vector stream. Experiments on both synthetic and real-world data were performed and showed that the proposed approach yield promising results compared with the conventional statistical measures.

Distributed Prevention Mechanism for Network Partitioning in Wireless Sensor Networks

  • Wang, Lili;Wu, Xiaobei
    • Journal of Communications and Networks
    • /
    • v.16 no.6
    • /
    • pp.667-676
    • /
    • 2014
  • Connectivity is a crucial quality of service measure in wireless sensor networks. However, the network is always at risk of being split into several disconnected components owing to the sensor failures caused by various factors. To handle the connectivity problem, this paper introduces an in-advance mechanism to prevent network partitioning in the initial deployment phase. The approach is implemented in a distributed manner, and every node only needs to know local information of its 1-hop neighbors, which makes the approach scalable to large networks. The goal of the proposed mechanism is twofold. First, critical nodes are locally detected by the critical node detection (CND) algorithm based on the concept of maximal simplicial complex, and backups are arranged to tolerate their failures. Second, under a greedy rule, topological holes within the maximal simplicial complex as another potential risk to the network connectivity are patched step by step. Finally, we demonstrate the effectiveness of the proposed algorithm through simulation experiments.

Distributed Resource Partitioning Scheme for Intercell Interference in Multicellular Networks

  • Song, Jae-Su;Lee, Seung-Hwan
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.1
    • /
    • pp.14-19
    • /
    • 2015
  • In multicellular wireless networks, intercell interference limits system performance, especially cell edge user performance. One promising approach to solve this problem is the intercell interference coordination (ICIC) scheme. In this paper, we propose a new ICIC scheme based on a resource partitioning approach to enhance cell edge user performance in a wireless multicellular system. The most important feature of the proposed scheme is that the algorithm is performed at each base station in a distributed manner and therefore minimizes the required information exchange between neighboring base stations. The proposed scheme has benefits in a practical environment where the traffic load distribution is not uniform among base stations and the backhaul capacity between the base stations is limited.

System-Level Fault Diagnosis using Graph Partitioning (그래프 분할을 이용한 시스템 레벨 결함 진단 기법)

  • Jeon, Gwang-Il;Jo, Yu-Geun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.12
    • /
    • pp.1447-1457
    • /
    • 1999
  • 본 논문에서는 일반적인 네트워크에서 적응력 있는(adaptive) 분산형 시스템 레벨 결함 진단을 위한 분할 기법을 제안한다. 적응력 있는 분산형 시스템 레벨 결함 진단 기법에서는 시스템의 형상이 변경될 때마다 시험 할당 알고리즘이 수행되므로 적응력 없는 결함 진단 기법에 비하여 결함 감지를 위한 시험의 갯수를 줄일 수 있다. 기존의 시험 할당 알고리즘들은 전체 시스템을 대상으로 하는 비분할(non-partitioning) 방식을 이용하였는데, 이 기법은 불필요한 과다한 메시지를 생성한다. 본 논문에서는 전체 시스템을 이중 연결 요소(biconnected component) 단위로 분할한 후, 시험 할당은 각 이중 연결 요소 내에서 수행한다. 이중 연결 요소의 관절점(articulation point)의 특성을 이용하여 각 시험 할당에 필요한 노드의 수를 줄임으로서, 비분할 기법들에 비해 초기 시험 할당에 필요한 메시지의 수를 감소시켰다. 또한 결함이 발생한 경우나 복구가 완료된 경우의 시험 재 할당은 직접 영향을 받는 이중 연결 요소내로 국지화(localize) 시켰다. 본 논문의 시스템 레벨 결함 진단 기법의 정확성을 증명하였으며, 기존 비분할 방식의 시스템 레벨 결함 진단 기법과의 성능 분석을 수행하였다.Abstract We propose an adaptive distributed system-level diagnosis using partitioning method in arbitrary network topologies. In an adaptive distributed system-level diagnosis, testing assignment algorithm is performed whenever the system configuration is changed to reduce the number of tests in the system. Existing testing assignment algorithms adopt a non-partitioning approach covering the whole system, so they incur unnecessary extra message traffic and time. In our method, the whole system is partitioned into biconnected components, and testing assignment is performed within each biconnected component. By exploiting the property of an articulation point of a biconnected component, initial testing assignment of our method performs better than non-partitioning approach by reducing the number of nodes involved in testing assignment. It also localizes the testing reassignment caused by system reconfiguration within the related biconnected components. We show that our system-level diagnosis method is correct and analyze the performance of our method compared with the previous non-partitioning ones.