• 제목/요약/키워드: particle volume fraction

검색결과 221건 처리시간 0.027초

용탕단조한 AC4A $Al/Al_2O_3+SiC_p$ 하이브리드 금속복합재료의 미세조직과 기계적 성질 (Microstructure of Squeeze Cast AC4A $Al/Al_2O_3+SiC_p$ Hybrid Metal Matrix Composite)

  • 김민수;조경목;박익민
    • 한국주조공학회지
    • /
    • 제14권3호
    • /
    • pp.258-266
    • /
    • 1994
  • AC4A $Al/Al_2O_3+SiC_p$ hybrid composites were fabricated by the squeeze infiltration technique. Effect of applied pressure, volume fraction of reinforcement($Al_2O_3$ and SiC) and SiC particle size($4.5{\mu}m$, $6.5{\mu}m$ and $9.3{\mu}m$) on the solidification microstructure of the hybrid composites were examined. Mechanical properties were estimated preliminarly by fractographic observation, hardness measurement and wear test. Results show that the microstructure of the hybrid composites were quite satisfactory, namely revealing relatively uniform distribution of reinforcements and refined matrix. Some aggregation of SiC particle caused by particle pushing was observed especially in the hybrid composites containg in fine particle($4.5{\mu}m$). Refined matrix was attributed to applied pressure and increased nucleation sites with addition of reinforcements. Fractured facet also revealed finer for the hybrid composites possibly due to refined matrix. Hardness and wear resistance increased with volume fraction of reinforcements. For hybrid composites with $9.3{\mu}m$ SiC, hardness was somewhat lower and wear resistance higher than other composites.

  • PDF

알루미나/산화아연/이산화티타늄 나노유체의 열전도율 측정 (Measurement of the Thermal Conductivity of Alumina/Zinc-Oxide/Titanium-Oxide Nanofluids)

  • 김상현;최선락;홍종간;김동식
    • 대한기계학회논문집B
    • /
    • 제29권9호
    • /
    • pp.1065-1073
    • /
    • 2005
  • The thermal conductivity of water- and ethylene glycol-based nanofluids containing alumina $(Al_2O_3)$, zinc oxide (ZnO) and titanium dioxide $(TiO_2)$ nanoparticles is measured by varying the particle diameter and volume fraction. The transient hot-wire method using an anodized tantalum wire for electrical insulation is employed for the measurement. The experimental results show that nanofluids have substantially higher thermal conductivities than those of the base fluid and the ratio of thermal conductivity enhancement increases linearly with the volume fraction. It has been found that the ratio of thermal conductivity enhancement increases with decreasing particle size but no empirical or theoretical correlation can explain the particle-size dependence of the thermal conductivity. This work provides, for the first time to our knowledge, a set of consistent experimental data over a wide range of nanofluid conditions and can therefore serve as a basis for developing theoretical models to predict thermal conduction phenomena in nanofluids.

Aluminum Iso-Propoxide에 의한 구형 알루미나 분체의 제조 (Preparation of Spherical Alumina Particle from Aluminum Iso-Propoxide)

  • 이진화;남기대;이동규
    • 한국응용과학기술학회지
    • /
    • 제16권2호
    • /
    • pp.163-170
    • /
    • 1999
  • Spherical alumina powders were prepared by the controlled hydrolysis of aluminum iso-propoxide in a solution consisting of n-octyl alcohol and acetonitrile. As aluminum alkoxide's concentration increased, the particle size was increased and size distribution was more broad. As-prepared particle morphology was not spherical when acetonitrile volume fraction was increased over than 60%. As-prepared amorphous powders crystallized to ${\gamma}$-alumina at $1000^{\circ}C$ and converted to ${\alpha}$-alumina at $1150^{\circ}C$. The particle morphology was retain after crystallization ${\alpha}$-alumina. When aluminum iso-propoxide was used as aluminum source, the optimum preparation condition of spherical alumina was 0.1M AIP, 0.2M H2O, $0.1g/{\ell}$ HPC with a volume fraction (1/1) of the n-octyl alcohol/acetonitrile, 10min of reaction time and 30min of aging time.

6061AI 복합재료 마모특성에 미치는 SiC입자 강화재 체적분율의 영향 (Effect of Volume fraction of SiC Particle Reinforcement on the Wear Properties of 6061AI Composites)

  • 김헌주
    • 열처리공학회지
    • /
    • 제15권2호
    • /
    • pp.82-92
    • /
    • 2002
  • In the present investigation wear behavior of the 6061AI composites reinforced with 5, 10, 20% SiC particles for dry sliding against a SM45C counterface was studied as a function of load and sliding velocity. Sliding wear tests were conducted at two loads(19.6 and 49N) and three sliding velocities(0.2, 1 and 2 m/sec) at constant sliding distance of 4000 m using pin-on-disk machine under room temperature. Presence of SiC reinforcement particles in the composites has displayed a transition from mild to severe wear at relatively higher applied load and sliding velocity compare to that of the matrix metal. As the volume fraction of SiC particles increased, the transition moved to a more severe wear conditions. Eventually, mild wear prevailed at a most severe wear conditions in this study, that was 49N load and 2 m/sec sliding velocity in 20% SiC particle/6061AI composite.

A Study on the Characteristics of Two-Phase Flow by Driven Bubbles in a Liquid Bath

  • Oh, Yool-Kwon;Seo, Dong-Pyo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권1호
    • /
    • pp.44-50
    • /
    • 2005
  • In the present study, the characteristics of upward bubble flow were experimentally investigated in a liquid bath. An electro-conductivity probe was used to measure local volume fraction and bubble frequency. Since the gas was concentrated at the near the nozzle, the flow parameters were high near the nozzle. In general their axial and radial values tended to decrease with increasing distance. For visualization of flow characteristics, a Particle Image Velocimetry (PIV) and a thermo-vision camera were used in the present study. The experimental results showed that heat transfer from bubble surface to water was largely completed within z = 10 mm from the nozzle, and then the temperature of bubble surface reached that of water rapidly. Due to the centrifugal force, the flow was more developed near the wall than at bubble-water plume. Vortex flow in the bottom region was relatively weaker than that in the upper region.

금속복합재료와 고분자복합재료의 마모 특성 비교 (Comparison of Wear Property Between Metal and Polymer Matrix Composites)

  • 김재동
    • 수산해양교육연구
    • /
    • 제28권6호
    • /
    • pp.1875-1881
    • /
    • 2016
  • The wear behavior for the two types of composites, those are epoxy matrix composites filled with silica particles and aluminium matrix composites filled with SiC particles, were compared to investigate the wear mechanism for these composites. Especially, the effect of the volume fraction for the epoxy matrix composites and the particle size for the aluminium matrix composites according to the apply load and sliding velocity were investigated. Wear tests of the pin-on-disc mode were carried out and followed by scanning electron microscope observations for the worn surface. The addition of the fillers in the composites were improved the wear resistance significantly and changed the wear mechanism for the both composites. These results were identified by the observation of the worn surface after testing.

Optimal fiber volume fraction prediction of layered composite using frequency constraints- A hybrid FEM approach

  • Anil, K. Lalepalli;Panda, Subrata K.;Sharma, Nitin;Hirwani, Chetan K.;Topal, Umut
    • Computers and Concrete
    • /
    • 제25권4호
    • /
    • pp.303-310
    • /
    • 2020
  • In this research, a hybrid mathematical model is derived using the higher-order polynomial kinematic model in association with soft computing technique for the prediction of best fiber volume fractions and the minimal mass of the layered composite structure. The optimal values are predicted further by taking the frequency parameter as the constraint and the projected values utilized for the computation of the eigenvalue and deflections. The optimal mass of the total layered composite and the corresponding optimal volume fractions are evaluated using the particle swarm optimization by constraining the arbitrary frequency value as mass/volume minimization functions. The degree of accuracy of the optimal model has been proven through the comparison study with published well-known research data. Further, the predicted values of volume fractions are incurred for the evaluation of the eigenvalue and the deflection data of the composite structure. To obtain the structural responses i.e. vibrational frequency and the central deflections the proposed higher-order polynomial FE model adopted. Finally, a series of numerical experimentations are carried out using the optimal fibre volume fraction for the prediction of the optimal frequencies and deflections including associated structural parameter.

An experimental study and new correlations of viscosity of ethylene glycol-water based nanofluid at various temperatures and different solid concentrations

  • Bidgoli, Mahmood Rabani;Kolahchi, Reza;Karimi, Mohammad Saeed
    • Structural Engineering and Mechanics
    • /
    • 제58권1호
    • /
    • pp.93-102
    • /
    • 2016
  • This article presents an experimental study on the effect of temperature and solid volume fraction of nanoparticles on the dynamic viscosity for the CuO/EG-water nanofluid. Nanoparticles with diameter of 40 nm are used in the present study to prepare nanofluid by two-step method. A "Brookfield viscometer" has been used to measure the dynamic viscosity of nanofluid with solid volume fraction up to 2% at the temperature range between 20 to $60^{\circ}C$. The findings have shown that dynamic viscosity of nanofluid increases with increasing particle volume fraction and decreasing temperature. Nine different correlations are developed on experimental data point to predict the relative dynamic viscosity of nanofluid at different temperatures. To make sure of accuracy of the proposed correlations, margin of deviation is presented at the end of this study. The results show excellent agreement between experimental data and those obtained through the correlations.

Pyrochlore상의 부피분율에 따른 PMN-Pyrochlore 2상 혼합체의 유전율변화;General Effective Media식의 적용 (Variation of Dielectric Constant with the Volume Fraction of Pyrochlore Phae in the PMN-Polychlore Diphasic System ; Application of General Effective Media Equation)

  • 허강일;김정주;김남경;김진호;조상희
    • 한국세라믹학회지
    • /
    • 제30권1호
    • /
    • pp.78-84
    • /
    • 1993
  • In PMN-pyrochlore phase mixtures, dielectric constant was measured as a function of the volume fraction of pyrochlore phase and considered with general effective media(GEM) equation. For the application of GEM equation to this system, the critical volume fraction(Vc) where connectivity between the perovskite PMN and pyrochlore phase changed from 0-3 to 3-3, was determined based on the each particle size ratio of two phases with microstructural observation. And then the t value was determined from modified percolation powder-law dependence ( K-Kc (V-Vc)t). In the case of applying such values of t and Vc to the GEM equation, which provided a reasonable fit to the measured dielectric constant within the experimental error range.

  • PDF

Numerical investigation on tortuosity of transport paths in cement-based materials

  • Zuo, Xiao-Bao;Sun, Wei;Liu, Zhi-Yong;Tang, Yu-Juan
    • Computers and Concrete
    • /
    • 제13권3호
    • /
    • pp.309-323
    • /
    • 2014
  • Based on the compositions and structures of cement-based materials, the geometrical models of the tortuosity of transport paths in hardened cement pastes, mortar and concrete, which are associated with the capillary porosity, cement hydration degree, mixture particle shape, aggregate volume fraction and water-cement ratio, are established by using a geometric approach. Numerical simulations are carried out to investigate the effects of material parameters such as water-cement ratio, volume fraction of the mixtures, shape and size of aggregates and cement hydration degree, on the tortuosity of transport paths in hardened cement pastes, mortar and concrete. Results indicate that the transport tortuosity in cement-based materials decreases with the increasing of water-cement ratio, and increases with the cement hydration degree, the volume fraction of cement and aggregate, the shape factor and diameter of aggregates, and the material parameters related to cement pastes, such as the water-cement ratio, cement hydration degree and cement volume fraction, are the primary factors that influence the transport tortuosity of cement-based materials.