DOI QR코드

DOI QR Code

Optimal fiber volume fraction prediction of layered composite using frequency constraints- A hybrid FEM approach

  • Anil, K. Lalepalli (National Institute of Technology Rourkela) ;
  • Panda, Subrata K. (National Institute of Technology Rourkela) ;
  • Sharma, Nitin (School of Mechanical Engineering, KIIT) ;
  • Hirwani, Chetan K. (Deparment of Mechanical Engineering, National Institute of Technology Patna) ;
  • Topal, Umut (Department of Civil Engineering, Karadeniz Technical University, Faculty of Technology)
  • Received : 2019.07.13
  • Accepted : 2020.03.14
  • Published : 2020.04.25

Abstract

In this research, a hybrid mathematical model is derived using the higher-order polynomial kinematic model in association with soft computing technique for the prediction of best fiber volume fractions and the minimal mass of the layered composite structure. The optimal values are predicted further by taking the frequency parameter as the constraint and the projected values utilized for the computation of the eigenvalue and deflections. The optimal mass of the total layered composite and the corresponding optimal volume fractions are evaluated using the particle swarm optimization by constraining the arbitrary frequency value as mass/volume minimization functions. The degree of accuracy of the optimal model has been proven through the comparison study with published well-known research data. Further, the predicted values of volume fractions are incurred for the evaluation of the eigenvalue and the deflection data of the composite structure. To obtain the structural responses i.e. vibrational frequency and the central deflections the proposed higher-order polynomial FE model adopted. Finally, a series of numerical experimentations are carried out using the optimal fibre volume fraction for the prediction of the optimal frequencies and deflections including associated structural parameter.

Keywords

References

  1. Adali, S., Richter, A., Verijenko, V.E. and Summers, E.B. (1995), "Optimal design of hybrid laminates with discrete ply angles for maximum buckling load and minimum cost", Compos. Struct., 32(1-4), 409-415. https://doi.org/10.1016/0263-8223(95)00067-4.
  2. Altenbach, H., Altenbach, J., Kissing, W. and Altenbach, H. (2004), Mechanics of Composite Structural Dlements, Springer-Verlag, Berlin.
  3. Apalak, M.K., Karaboga, D. and Akay, B. (2014), "The artificial bee colony algorithm in layer optimization for the maximum fundamental frequency of symmetrical laminated composite plates", Eng. Optim., 46(3), 420-437. https://doi.org/10.1080/0305215X.2013.776551.
  4. Apalak, Z.G., Apalak, M.K., Ekici, R. and Yildirim, M. (2011), "Layer optimization for maximum fundamental frequency of rigid point-supported laminated composite plates", Polym. Compos., 32(12), 1988-2000. https://doi.org/10.1002/pc.21230.
  5. Aymerich, F. and Serra, M. (2008), "Optimization of laminate stacking sequence for maximum buckling load using the ant colony optimization (ACO) metaheuristic", Compos. Part A: Appl. Sci. Manuf., 39(2), 262-272. https://doi.org/10.1016/j.compositesa.2007.10.011.
  6. Bargh, H.G. and Sadr, M.H. (2012), "Stacking sequence optimization of composite plates for maximum fundamental frequency using particle swarm optimization algorithm", Meccanica, 47(3), 719-730. https://doi.org/10.1007/s11012-011-9482-5.
  7. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Meth., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825.
  8. Cho, H.K. (2013), "Design optimization of laminated composite plates with static and dynamic considerations in hygrothermal environments", Int. J. Precis. Eng. Manuf., 14(8), 1387-1394. https://doi.org/10.1007/s12541-013-0187-7.
  9. Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2003), Concepts and Applications of Finite Element Analysis, John Willy and Sons Pvt. Ltd, Singapore.
  10. Eberhart, R.C. and Shi, Y. (2001), "Tracking and optimizing dynamic systems with particle swarms", Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), Vol. 1, 94-100.
  11. Gay, D. and Hoa, S.V. (2007), Composite Materials: Design and Applications, CRC press.
  12. Haftka, R.T. and Walsh, J.L. (1992), "Stacking-sequence optimization for buckling of laminated plates by integer programming", AIAA J., 30(3), 814-819. https://doi.org/10.2514/3.10989.
  13. Ho-Huu, V., Do-Thi, T.D., Dang-Trung, H., Vo-Duy, T. and Nguyen-Thoi, T. (2016), "Optimization of laminated composite plates for maximizing buckling load using improved differential evolution and smoothed finite element method", Compos. Struct., 146, 132-147. https://doi.org/10.1016/j.compstruct.2016.03.016.
  14. Ho-Huu, V., Nguyen-Thoi, T., Vo-Duy, T. and Nguyen-Trang, T. (2016), "An adaptive elitist differential evolution for optimization of truss structures with discrete design variables", Comput. Struct., 165, 59-75. https://doi.org/10.1016/j.compstruc.2015.11.014.
  15. Hwang, S.F., Hsu, Y.C. and Chen, Y. (2014), "A genetic algorithm for the optimization of fiber angles in composite laminates", J. Mech. Sci. Technol., 28(8), 3163-3169. https://doi.org/10.1007/s12206-014-0725-y.
  16. Jing, Z., Fan, X. and Sun, Q. (2015), "Stacking sequence optimization of composite laminates for maximum buckling load using permutation search algorithm", Compos. Struct., 121, 225-236. https://doi.org/10.1016/j.compstruct.2014.10.031.
  17. Jones, R.M. (2014), Mechanics of Composite Materials, CRC press.
  18. Kaveh, A. and Ghazaan, M.I. (2015), "Hybridized optimization algorithms for design of trusses with multiple natural frequency constraints", Adv. Eng. Softw., 79, 137-147. https://doi.org/10.1016/j.advengsoft.2014.10.001.
  19. Kisa, M. (2004), "Free vibration analysis of a cantilever composite beam with multiple cracks", Compos. Sci. Technol., 64(9), 1391-1402. https://doi.org/10.1016/j.compscitech.2003.11.002.
  20. Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016.
  21. Kolahchi, R., Keshtegar, B. and Fakhar, M.H. (2017), "Optimization of dynamic buckling for sandwich nanocomposite plates with sensor and actuator layer based on sinusoidal-visco-piezoelasticity theories using Grey Wolf algorithm", J. Sandw. Struct. Mater., 22(1), 3-27. https://doi.org/10.1177/1099636217731071.
  22. Krawczuk, M., Ostachowicz, W. and Zak, A. (1997), "Modal analysis of cracked, unidirectional composite beam", Compos. Part B: Eng., 28(5-6), 641-650. https://doi.org/10.1016/S1359-8368(97)82238-X.
  23. Le-Anh, L., Nguyen-Thoi, T., Ho-Huu, V., Dang-Trung, H. and Bui-Xuan, T. (2015), "Static and frequency optimization of folded laminated composite plates using an adjusted differential evolution algorithm and a smoothed triangular plate element", Compos. Struct., 127, 382-394. https://doi.org/10.1016/j.compstruct.2015.02.069.
  24. Le Riche, R. and Haftka, R.T. (1993), "Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm", AIAA J., 31(5), 951-956. https://doi.org/10.2514/3.11710.
  25. Lin, C.C. and Lee, Y.J. (2004), "Stacking sequence optimization of laminated composite structures using genetic algorithm with local improvement", Compos. Struct., 63(3-4), 339-345. https://doi.org/10.1016/S0263-8223(03)00182-X.
  26. Liu, Q. (2015), "Analytical sensitivity analysis of eigenvalues and lightweight design of composite laminated beams", Compos. Struct., 134, 918-926. 10.1016/j.compstruct.2015.09.002.
  27. Liu, Q. and Paavola, J. (2016), "Lightweight design of composite laminated structures with frequency constraint", Compos. Struct., 156, 356-360. https://doi.org/10.1016/j.compstruct.2015.08.116.
  28. Mallick, P.K. (2007), Fiber-Reinforced Composites: Materials, Manufacturing, and Design, CRC Press.
  29. Nagendra, S., Haftka, R.T. and Gurdal, Z. (1992), "Stacking sequence optimization of simply supported laminates with stability and strain constraints", AIAA J., 30(8), 2132-2137. https://doi.org/10.2514/3.11191.
  30. Narita, Y. (2003), "Layerwise optimization for the maximum fundamental frequency of laminated composite plates", J. Sound Vib., 263(5), 1005-1016. https://doi.org/10.1016/S0022-460X(03)00270-0.
  31. Narita, Y. and Turvey, G.J. (2004), "Maximizing the buckling loads of symmetrically laminated composite rectangular plates using a layerwise optimization approach", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 218(7), 681-691. https://doi.org/10.1243/0954406041319554.
  32. Patle, B.K., Hirwani, C.K., Singh, R.P. and Panda, S.K. (2018), "Eigenfrequency and deflection analysis of layered structure using uncertain elastic properties-a fuzzy finite element approach", Int. J. Approx. Reason., 98, 163-176. https://doi.org/10.1016/j.ijar.2018.04.013.
  33. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press.
  34. Sadr, M.H. and Ghashochi Bargh, H. (2012), "Optimization of laminated composite plates for maximum fundamental frequency using Elitist-Genetic algorithm and finite strip method", J. Glob. Optim., 54(4), 707-728. https://doi.org/10.1007/s10898-011-9787-x.
  35. Sonmez, M. (2011), "Discrete optimum design of truss structures using artificial bee colony algorithm", Struct. Multidisc. Optim., 43(1), 85-97. https://doi.org/10.1007/s00158-010-0551-5.
  36. Todoroki, A. and Haftka, R.T. (1998), "Stacking sequence optimization by a genetic algorithm with a new recessive gene like repair strategy", Compos. Part B: Eng., 29(3), 277-285. https://doi.org/10.1016/S1359-8368(97)00030-9.
  37. Topal, U. and Uzman, U. (2008a), "Strength optimization of laminated composite plates", J. Compos. Mater., 42(17), 1731-1746. https://doi.org/10.1177/0021998308093368.
  38. Topal, U. and Uzman, U. (2008b), "Maximization of buckling load of laminated composite plates with central circular holes using MFD method", Struct. Multidisc. Optim., 35(2), 131-139. https://doi.org/10.1007/s00158-007-0119-1.
  39. Topal, U., Dede, T. and Ozturk, H.T. (2017), "Stacking sequence optimization for maximum fundamental frequency of simply supported antisymmetric laminated composite plates using Teaching-learning-based Optimization", KSCE J. Civil Eng., 21(6), 2281-2288. https://doi.org/10.1007/s12205-017-0076-1.
  40. Topal, U. (2012), "Frequency optimization of laminated composite plates with different intermediate line supports", Sci. Eng. Compos. Mater., 19(3), 295-306. https://doi.org/10.1515/secm-2012-0004.
  41. Vinson, J.R and Sierakowski, R.L. (1987), The Behavior of Structures Composed of Composite Materials, Vol. 5, 1st Edition, Springer, Dordrecht, Netherlands.
  42. Vinson, J.R. and Sierakowski, R.L. (2002), The Behavior of Structures Composed of Composite Materials, Vol. 105, 2nd Edition, Springer, Dordrecht, Netherlands.
  43. Vo-Duy, T., Ho-Huu, V., Do-Thi, T. D., Dang-Trung, H. and Nguyen-Thoi, T. (2017), "A global numerical approach for lightweight design optimization of laminated composite plates subjected to frequency constraints", Compos Struct., 159, 646-655. https://doi.org/10.1016/j.compstruct.2016.09.059.
  44. Zine, A., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S.R. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., 26(2), 125-137. https://doi.org/10.12989/scs.2018.26.2.125.