• Title/Summary/Keyword: particle velocities

Search Result 267, Processing Time 0.026 seconds

Bedload Sediment Transport and Morphological Change in Cross Sections of Straight Open-Channel (직선 개수로 횡단면에서의 소류사 이송과 지형 변화)

  • Pham, Chien Van;Kim, Tae-Boem;Choi, Sung-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.62-66
    • /
    • 2010
  • This study presents velocities of bedload sediment transport in both longitudinal and lateral directions and applied in considering morphological change of straight open channel. The velocities of particle motion have obtained by considering the forces balance acting on particles on the bed between the drag, tangential component of the immersed weight of the particle, and Coulomb's resistive forces. Numerical profiles of particle motion velocities reveals good agreement in comparison between this study and Kovacs and Parker (1994). The evaluated velocities components of particle transport are get used to estimate bedload transport rate in considering morphological change of straight open channel. For the application, numerical solution is applied to laboratory experiment which shows very close solution profiles between this study and observed data of a self-formed straight channel.

  • PDF

Development of Holographic Particle Velocimetry System and Its Application to Spray Droplets (홀로그래피 입자속도 측정시스템의 개발과 분무 액적에의 적용)

  • Choo, Y.J.;Kang, B.S.
    • Journal of ILASS-Korea
    • /
    • v.10 no.3
    • /
    • pp.17-28
    • /
    • 2005
  • The Holographic Particle Velocimetry system can be a promising optical tool for the measurements of three dimensional particle velocities. In this study, diffused illumination holographic system to measure the sizes and 3D velocities of moving particles based on automatic image processing was developed. First of all basic optical systems for pulse laser recording, continuous laser reconstruction, and image acquisition, were constructed. To determine the position of particles in the optical axis, new three auto-focusing parameters(AEP), namely, Correlation Coefficient, Sharpness Index, and Depth Intensity were introduced and verified. The developed system was applied to spray droplets to validate the capability of the system. Three dimensional positions of particles viewed from two sides were decided using AFP and then 3D velocities of Particles were extracted by particle tracking algorithm. Comparison of measurement results of sizes and 3D velocities of particles with those obtained by laser instrument, PDPA, showed good consistency of the developed holographic system.

  • PDF

Measurements of Three-Dimensional Velocities of Spray Droplets Using the Holographic Velocimetry System

  • Choo, Yeon-Jun;Kang, Bo-Seon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.1095-1103
    • /
    • 2003
  • The Holographic Particle Velocimetry system can be a promising optical tool for the measurements of three dimensional particle velocities. In this study, the holographic particle velocimetry system was used to measure the sizes and velocities of droplets produced by a commercial full cone spray nozzle. As a preliminary validation experiment, the velocities of glass beads on a rotating disk were measured with uncertainty analysis to identify the sources of all relevant errors and to evaluate their magnitude. The error of the particle velocity measured by the holographic method was 0.75 ㎧, which was 4.5% of the known velocity estimated by the rotating speed of disk. The spray droplet velocities ranged from 10.3 to 13.3 ㎧ with average uncertainty of ${\pm}$ 1.6 ㎧, which was ${\pm}$ 14% of the mean droplet velocity. Compared with relatively small uncertainty of velocity components in the normal direction to the optical axis, uncertainty of the optical axis component was very high. This is due to the long depth of field of droplet images in the optical axis, which is inherent feature of holographic system using forward-scattering object wave of particles.

Measurements of Three-Dimensional Droplet Velocities Using the Holographic System (홀로그래피를 이용한 분무 액적의 3차원 속도 측정)

  • Oh, Dai-Jin;Choo, Yeon-Jun;Kang, Bo-Seon
    • Journal of ILASS-Korea
    • /
    • v.6 no.4
    • /
    • pp.31-38
    • /
    • 2001
  • The Holographic Particle Velocimetry system can be a promising optical tool for the measurements of three dimensional particle velocities. In this study, the holographic panicle velocimetry system was used to measure the sizes and velocities of droplets formed by a commercial full cone spray nozzle. Uncertainty analysis was performed to identify the sources of all relevant errors and to evaluate their magnitude. The droplet velocities ranged from 10.3 to 13.3 m/s with average uncertainty of ${\pm}1.6m/s$, which is ${\pm}14%$ of the mean droplet velocity. Compared with relatively small uncertainties of velocity components in the normal direction to the optical axis, the uncertainty of the optical axis component is ${\pm}3.6m/s$. This is due to the long depth of field of droplet images in the optical axis, which is inherent feature of holographic system using forward-scattering object wave of particles.

  • PDF

Development of Digital Holographic Microscopy System for Measurements of Particle Velocities in MR Fluids (MR 유체 입자 속도 계측을 위한 디지털 홀로그래피 현미경 시스템의 개발)

  • Chen, He-Peng;Kang, B.S.
    • Journal of ILASS-Korea
    • /
    • v.21 no.2
    • /
    • pp.88-94
    • /
    • 2016
  • In this study digital holographic microscopy system for measurements of 3-D velocities of particles in MR fluid is developed. Holograms are recorded using either a CCD camera with a double pulse laser or a high-speed camera with a continuous laser. To process recorded holograms, the correlation coefficient method is used for focal plane determination of particles. To remove noise and improve the quality of holograms and reconstructed images, a Wiener filter is adopted. The two-threshold and image segmentation methods are used for binary image transformation. For particle pairing, the match probability method is adopted. The developed system will be applied to measurements of the characteristics of unsteady 3-D particle velocities in MR fluids through the next stage of this study.

Validation Experiments for a Holographic Particle Velocimetry System (펄스 홀로그래프를 이용한 입자 속도 측정 시스템의 검증 실험)

  • Oh, Dai-Jin;Choo, Yeon-Jun;Kang, Bo-Seon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.714-719
    • /
    • 2001
  • The Holographic Particle Velocimetry system can be a promising optical tool for the measurements of three dimensional particle velocities. In this research, the optical system for double pulse holographic recording and reconstruction of particle images was developed. Validation experiments for the developed system were conducted measuring the velocities of glass beads on a rotating disk. Uncertainty analysis was performed to identify the sources of all relevant errors and to evaluate their magnitude. The measurement results of distance between glass beads, size, and velocities of them using holographic method compared reasonalbly well with the known values within acceptable range of errors.

  • PDF

Validation of Digital Holographic Particle Velocity Measurement System (디지털 홀로그래피 입자 속도 계측시스템의 검증)

  • Roh, H.S.;Kang, B.S.
    • Journal of ILASS-Korea
    • /
    • v.18 no.3
    • /
    • pp.119-125
    • /
    • 2013
  • Digital holographic particle velocity measurement system can be a promising optical tool for the measurements of three dimensional particle velocities. In this research, validation experiments for the digital holographic particle velocity measurement system were conducted with measuring the velocities of glass beads on a rotating disk. Uncertainty analysis was performed to identify the sources of all relevant errors and to evaluate their magnitudes. The measurement results of particle velocities obtained with digital holographic method are compared reasonably well with the known values within acceptable range of errors. Moreover, digital holographic method showed better performance compared with that of optical holographic system.

Experimental Validation for the Development of Holographic Particle Velocimetry System for Spray Droplets (홀로그래피를 이용한 분무 액적 속도 측정시스템 개발을 위한 실험적 검증)

  • Gang, Bo-Seon;O, Dae-Jin;Chu, Yeon-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.539-546
    • /
    • 2002
  • The Holographic Particle Velocimetry system can be a promising optical tool leer the measurements of three dimensional particle velocities. In this research, validation experiments for the development of holographic particle velocimetry system for spray droplets were conducted with measuring the velocities of glass beads on a rotating disk. Uncertainty analysis was performed to identify the sources of all relevant errors and to evaluate their magnitude. The measurement results of distance between glass beads, size, and velocities obtained with holographic method are compared reasonably well with the known values within acceptable range of errors.

Analysis on Particle Deposition onto a Horizontal Semiconductor Wafer at Vacuum Environment (진공환경에서 수평 웨이퍼 표면으로의 입자침착 해석)

  • Yoo, Kyung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1715-1721
    • /
    • 2002
  • Numerical analysis was conducted to characterize the gas flow field and particle deposition on a horizontal freestanding semiconductor wafer under the laminar flow field at vacuum environment. In order to calculate the properties of gas, the gas was assumed to obey the ideal gas law. The particle transport mechanisms considered were convection, Brownian diffusion and gravitational settling. The averaged particle deposition velocities and their radial distributions fnr the upper surface of the wafer were calculated from the particle concentration equation in an Eulerian frame of reference for system pressures of 1 mbar~1 atm and particle sizes of 2nm~10$^4$ nm(10 ${\mu}{\textrm}{m}$). It was observed that as the system pressure decreases, the boundary layer of gas flow becomes thicker and the deposition velocities are increased over the whole range of particle size. One thing to be noted here is that the deposition velocities are increased in the diffusion dominant particle size range with decreasing system pressure, whereas the thickness of the boundary layer is larger. This contradiction is attributed to the increase of particle mechanical mobility and the consequent increase of Brownian diffusion with decreasing the system pressure. The present numerical results showed good agreement with the results of the approximate model and the available experimental data.

Analysis of Particle Motion Impinging on a Flat Plate (평판에 충돌하는 미립자의 유동분석)

  • Kim, Jin;Kim, Byung-Moon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.9-16
    • /
    • 2002
  • The particles velocity in the instantaneous flow field and velocity change of particles along the jet centerline for various particle diameter in a circular turbulent impingement jet are investigated by using particle image velocimetry(PIV) and an equation of particle motion simplified by terms of inertia forces, drag and gravitational force. The jet Reynolds number was 3300 and 8700, and glass beads of 30,58 and 100$\mu$m in diameter were used. The PIV results show that the direction and size of velocity depends not only on the number density of particle but also on the particle momentum. The results obtained form calculation suggest that the particle velocity near the first impingement region deviated from local air velocity, which accords well with the PIV results. The rebound height of particle increase with the particle diameter. In the second-impingement, particle velocities increased sluggishly with Re=3300 but particle velocities uniformed with Re=8700 in stagnation region.