• Title/Summary/Keyword: particle trajectory simulation

Search Result 49, Processing Time 0.02 seconds

Development of superconducting high gradient magnetic separation system for scale removal from feed-water in thermal power plant

  • Shibatani, Saori;Nakanishi, Motohiro;Mizuno, Nobumi;Mishima, Fumihito;Akiyama, Yoko;Okada, Hidehiko;Hirota, Noriyuki;Matsuura, Hideki;Maeda, Tatsumi;Shigemoto, Naoya;Nishijima, Shigehiro
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.19-22
    • /
    • 2016
  • A Superconducting High Gradient Magnetic Separation (HGMS) system is proposed for treatment of feed-water in thermal power plant [1]. This is a method to remove the iron scale from feed-water utilizing magnetic force. One of the issues for practical use of HGMS system is to extend continuous operation period. In this study, we designed the magnetic filters by particle trajectory simulation and HGMS experiments in order to solve this problem. As a result, the quantity of magnetite captured by each filter was equalized and filter blockage was prevented. A design method of the magnetic filter was proposed which is suitable for the long-term continuous scale removal in the feed-water system of the thermal power plant.

A Numerical Study on Axial Inlet Cyclone for Diesel Engine (디젤 엔진용 싸이클론 내부 수치 해석)

  • Kim, S.K.;Son, C.S.;Kim, I.K.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.16-21
    • /
    • 2006
  • On this study, numerical analysis was performed for the 3 dimensional flow field of gas and particle phase for axial inlet cyclone, a part of dust collector. We applied FVM to visualize the gas phase. The flow was solved using ${\kappa}-{\varepsilon}$ turbulence model. The major parameters considered in this study were helical guide vane, inner diameter, length. Particle trajectory calculations were performed for the particle sizes of $5{\mu}m{\sim}75{\mu}m$. The distribution curve of particle sizes was made of Rosin-Rammler function. The simulation results show various gas flows, particle trajectories on numerical models.

  • PDF

Lagrangian Investigation of Turbulent Channel Flow (I) - An Assessment of Particle Tracking Algorithms - (난류채널유동의 라그란지안 해석 (I)- 입자추적 알고리듬 평가 -)

  • Choi, Jung-Il;Lee, Chang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.859-866
    • /
    • 2003
  • The Lagrangian dispserion of fluid particles in inhomogeneous turbulence is investigated by a direct numerical simulation of turbulent channel flow. Fluid particle velocity and acceleration along a particle trajectory are computed by employing several interpolation schemes such as linear interpolation, high-order Lagrange polynomial interpolation and the Hermite interpolation schemes. The performances of the schemes are evaluated through comparison of errors in computed particle positions, velocities and accelerations against spectral interpolation. Adopting the four-point Hermite interpolation in the homogeneous directions and Chebyshev polynomials in the wall-normal direction appears to produce most reliable Lagrangian statistics including acceleration correlations with a reasonable amount of computational overhead.

A Study on Dispersion Behaviors of Fume Particles in Laser Cutting Process of Optical Plastic Thin Films

  • Kim, Kyoungjin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.62-68
    • /
    • 2019
  • The optoelectronic display units such as TFT-LCD or OLED require many thin optical plastic films and their mass manufacturing processes employ CO2 laser cutting of those thin films in a large quantity. However, laser film cutting could generate fume particles through melt shearing, vaporization, and chemical degradation and those particles could be of great concern for film surface contamination. In order to appreciate the fume particle dispersion behaviors in laser film cutting, this study relies on random particle simulations by probabilistic distributions of particle size, ejection velocity and angles coupled with Basset-Boussinesq-Oseen model of particle trajectory in low Reynolds number flows. Here, up to one million particles of random sampling have been tested to effectively show fume particles dispersed on the film surface. The computational results could show that particular range of fume particle size could easily disperse into the pixel region of processed optical films.

Computational Analysis of Flow Velocity and Particle Trajectory on the Surface of Bag-Shaped Filters with a Different Permeability (투과율에 따른 백-형상의 필터 표면에서의 유동속도 및 입자궤적 수치해석)

  • Park, Seok Joo;Lee, Dong Geun;Lee, Si Hyun
    • Korean Chemical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.294-299
    • /
    • 2006
  • Computational simulation was performed to analyze flow velocities and particle trajectories onto the surface of bag-shaped filters with a different permeability. When the permeability of a filter is lower than that of a low-efficient fabric bag-filter widely used, the distributions of flow velocities and particle trajectories on the filter surface were not different with decreasing the filter permeability. The distributions of streamlines and radial directional gas velocities were uniform on the filter surface except for the neighbors of the bottom edge and outlet of the filter. The particle trajectories onto filter surface were more densely distributed around the bottom edge of the filter, so that the particle number on the filter surface was maximized near the bottom edge and decreased in the direction of the filter outlet.

Particle Dispersion and Effect of Spin in the Turbulent Boundary Layer Flow (난류 경계층 유동에서 입자의 확산과 스핀의 영향)

  • Kim, Byung-Gu;Lee, Chang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.89-98
    • /
    • 2004
  • In this paper, we develope a dispersion model based on the Generalized Langevin Model. Thomson's well-mixed condition is the well known criterion to determine particle dispersion. But, it has 'non-uniqueness problem'. To resolve this, we adopt a turbulent model which is a new approach in this field of study. Our model was greatly simplified under the self-similarity condition, leaving model only two model constants $C_{0}$ and ${\gamma}$$_{5}$ that control the dispersion and spin which measures rotational property of the Lagrangian particle trajectory. We investigated the sign of spin as well as magnitude by using the Direct Numerical Simulation. Model calculations were performed on the neutrally stable boundary layer flow. We found that spin has weak effect on the particle dispersion but it shows the significant effect on the horizontal flux compared to the zero-spin model.

Particle Motion of a Vertical Rotary Distributor for Granular Material (수직형(垂直形) 로터리 살포기(撒布機)에 의한 비료입자(肥料粒子)의 운동(運動))

  • Sung, M.K.;Park, J.G.;Choi, C.H.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.4
    • /
    • pp.242-250
    • /
    • 1989
  • The performance of a vertical type centrifugal distributor of granular materials was studied by means of mathematical models and experimental investigations. To develop the mathematical description of particle motion, some assumptions were made. The distribution process consisted of three stages: the entrance of a particle to the blade, the motion of the particle on the blade, and the motion of the particle in the air. The physical properties of fertilizer, which affected the particle motion, were investigated: bluk density, coefficient of friction, coefficient of restitution, and particle size distribution. The particle motion were simulated by using a computer. A prototype distributor was designed and constructed for experimental tests. The following conclusions were drawn from the computer simulation and experiment results. 1. The fertilizer may slide or roll at the point of contact when they impact on the blade and move along the blade. 2. The interaction among fertilizers may prevent them from bouncing. 3. When fertilizers roll on the blade, rolling resistance is one of the factors affecting the particle's motion. 4. The trajectory angle and position of fertilizers from a disc depend on the blade position and particle shape, but the rotating speed of the disc affected them only slightly.

  • PDF

Trajectory Simulation of ASR Particles in Induction Electrostatic Separation (유도형 정전선별에서 ASR 입자의 궤적모사)

  • Kim, Beom-uk;Park, Chul-hyun
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.96-105
    • /
    • 2019
  • Automobile shredder residue (ASR) is the final waste produced when end-of-life vehicles (ELVs) are shredded. ASR can be separated using mineral-processing operations such as comminution, air classification, magnetic separation, and/or electrostatic separation. In this work, trajectory analyses of conductors (copper) and non-conductors (glass) in the ASR have been carried out using induction electrostatic separator for predicting or improving the ASR-separation efficiency. From results of trajectory analysis for conductors, the trajectories of copper wire by observation versus simulation for coarse particles of 0.5 and 0.25 mm showed consistent congruity. The observed 0.06 mm fine-particles trajectory was deflected toward the (-) attractive electrode owing to the charge-density effects due to the particle characteristics and relative humidity. In the case of non-conductors, the actual trajectory of dielectric glass deflected toward the (-) electrode, showing characteristics similar to those of conductive particles. The analyses of stereoscopic microscope and SEM & EDS found heterologous materials (fine ferrous particles and conductive organics) on the glass surface. This demonstrates the glass decreasing separation efficiency for non-ferrous metals during electrostatic separation for the recycling of ASR. Future work will require a pretreatment process for eliminating impurities from the glass and advanced trajectory-simulation processes.

Numerical Simulation of Two-Phase Flow for Gas-Solid Particles (가스와 입자가 혼합된 2상 유동에 관한 수치해석적 연구)

  • Jung H.;Choi J. W.;Park C. G.
    • Journal of computational fluids engineering
    • /
    • v.6 no.4
    • /
    • pp.8-14
    • /
    • 2001
  • The phenomena of two-phase suspension flows appear widely in nature and industrial processes. Hence, it is of great importance to understand the mechanism of the gas-solid two-phase flows. In the present study, the numerical simulation has been approached by utilizing the Eulerian-Lagrangian methodology for describing the characteristics of the fluid and particulate phases in a vertical pipe and a 90°square-sectioned bend. The continuous phase(gas phase) is described by the Eulerian formulation and a κ-ε turbulence model is employed to find mean and turbulent properties of the gas phase. The particle properties(velocity and trajectory) are then described by a Lagrangian approach and computed using the mean velocity and turbulent fluctuating velocity of the gas phase. The predictions are compared with measurements by laser-Doppler velocimeter for the validation. As a result, the calculated results show good agreements.

  • PDF

Numerical Simulation of the Wind Flow Over a Triangular Prism with a Porous Windbreak (다공성 방풍벽이 설치된 삼각프리즘 주위 유동장의 수치모사)

  • 김현구;임희창;이정묵
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.3
    • /
    • pp.223-233
    • /
    • 1999
  • The wind-flow characteristics over a two-dimensional triangular prism with a porous windbreak are numerically investigated. The geometry is a simplified model of large outdoor stack with a frontal wall-type windbreak which is used to prevent particle dispersion by reducing wind speed over stak surface. In the present numerical model, the RNG k-$\varepsilon$ model, the orthogonal grid system and the QUICK scheme are employed for the successful simulation of separated flow. The predicted results are compared and validated with the associated wind-tunnel experiments. In addition, the trajectories of dispersed particles and their sedimentation characteristics are quantitatively investingated using a Lagrangian turbulent-dispersion model.

  • PDF