• 제목/요약/키워드: particle swarm algorithm (PSO)

검색결과 333건 처리시간 0.023초

Optimal Capacitor Placement Considering Voltage-stability Margin with Hybrid Particle Swarm Optimization

  • Kim, Tae-Gyun;Lee, Byong-Jun;Song, Hwa-Chang
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권6호
    • /
    • pp.786-792
    • /
    • 2011
  • The present paper presents an optimal capacitor placement (OCP) algorithm for voltagestability enhancement. The OCP issue is represented using a mixed-integer problem and a highly nonlinear problem. The hybrid particle swarm optimization (HPSO) algorithm is proposed to solve the OCP problem. The HPSO algorithm combines the optimal power flow (OPF) with the primal-dual interior-point method (PDIPM) and ordinary PSO. It takes advantage of the global search ability of PSO and the very fast simulation running time of the OPF algorithm with PDIPM. In addition, OPF gives intelligence to PSO through the information provided by the dual variable of the OPF. Numerical results illustrate that the HPSO algorithm can improve the accuracy and reduce the simulation running time. Test results evaluated with the three-bus, New England 39-bus, and Korea Electric Power Corporation systems show the applicability of the proposed algorithm.

A new PSRO algorithm for frequency constraint truss shape and size optimization

  • Kaveh, A.;Zolghadr, A.
    • Structural Engineering and Mechanics
    • /
    • 제52권3호
    • /
    • pp.445-468
    • /
    • 2014
  • In this paper a new particle swarm ray optimization algorithm is proposed for truss shape and size optimization with natural frequency constraints. These problems are believed to represent nonlinear and non-convex search spaces with several local optima and therefore are suitable for examining the capabilities of new algorithms. The proposed algorithm can be viewed as a hybridization of Particle Swarm Optimization (PSO) and the recently proposed Ray Optimization (RO) algorithms. In fact the exploration capabilities of the PSO are tried to be promoted using some concepts of the RO. Five numerical examples are examined in order to inspect the viability of the proposed algorithm. The results are compared with those of the PSO and some other existing algorithms. It is shown that the proposed algorithm obtains lighter structures in comparison to other methods most of the time. As will be discussed, the algorithm's performance can be attributed to its appropriate exploration/exploitation balance.

PSO(Particle Swarm Optinization)탐색과정의 가시화 툴 ((Visualization Tool of searching process of Particle Swarm Optimization))

  • 유명련;김현철
    • 융합신호처리학회논문지
    • /
    • 제3권4호
    • /
    • pp.35-41
    • /
    • 2002
  • 복잡한 문제들의 근사해를 구하기 위하여 최근 다양한 방법들이 소개되고 있다. 이러한 방법들은 주로 금속의 서랭(Annealing)에 의해 금속분자의 에너지가 최저점에 도달하는 과정을 모의실험한 최적화 기법(Simulated Annealing), 생물의 적자생존(Survival of Fittest)과정을 이용한 최적화 기법인 유전적 알고리즘(Genetic Algorithm)등 물리적 현상이나 생물 ?생명에 관련된 모의를 최적화 문제에 응용한 방법들이다. 최근에 소개된 Particle Swarm Optimization(PSO)는 주로 조류나 어류등의 생물의 무리가 각각의 개체가 가지고 있는 정보를 공유해가며 먹이를 찾아가는 과정을 모의한 기법이다. 하지만, 이 기법의 탐색과정이 명확하게 밝혀져 있지 않다. 본 논문에서는 PSO의 탐색과정을 가시화 하는 것을 목적으로 한다. 탐색과정을 가시화 하는 작업을 통해 그 탐색 능력을 시각적으로 파악하는 것이 가능하며 기법에 관한 이해를 돕고 교육적 효과도 기대 가능하다.

  • PDF

MG-PSO 알고리즘을 적용한 PTS 기법에 의한 OFDM 신호의 PAPR 감소 (PAPR Reduction of an OFDM Signal by use of PTS scheme with MG-PSO Algorithm)

  • 김완태;유선용;조성준
    • 대한전자공학회논문지TC
    • /
    • 제46권1호
    • /
    • pp.1-9
    • /
    • 2009
  • OFDM(Orthogonal Frequency Division Multiplexing) 시스템은 주파수 선택적 페이딩(frequency selective fading)과 협대역 간섭(narrowband interference)에 강한 전송 방식으로 대용량 데이터 통신에 적합하다. 하지만 독립적으로 변조된 많은 부반송파들의 중첩으로 신호의 진폭이 증가하여 PAPR(Peak-to-Average Power Ratio)이 증가하는 문제가 발생한다. PAPR 문제를 해결하기 위해 제안된 PTS(Partial Transmit Sequence) 기법은 OFDM 신호를 부블록으로 나눈 후 위상 가중치를 곱하여 PAPR을 감소시킬 수 있지만, 위상 가중치를 탐색하는 과정에서 계산의 복잡도가 부블록 수에 따라 지수적으로 증가하는 단점이 있다. 본 논문에서는 PTS 기법의 위상 탐색 과정에 최적화 기법인 변형된 Greedy 알고리즘과 PSO(Particle Swarm Optimization) 알고리즘을 조합한 MG-PSO(Modified Greedy algorithm-Particle Swarm Optimization) 알고리즘을 적용한 구조를 제안하였다. 이 구조는 PTS 기법의 위상 탐색 과정에서 계산 복잡도가 지수적으로 증가하는 문제를 해결하고 PAPR 감소 성능도 보장할 수 있다. 제안하는 알고리즘을 통신 시스템에 적용하였을 때 PAPR 감소 성능을 분석하였다.

Feasibility study of improved particle swarm optimization in kriging metamodel based structural model updating

  • Qin, Shiqiang;Hu, Jia;Zhou, Yun-Lai;Zhang, Yazhou;Kang, Juntao
    • Structural Engineering and Mechanics
    • /
    • 제70권5호
    • /
    • pp.513-524
    • /
    • 2019
  • This study proposed an improved particle swarm optimization (IPSO) method ensemble with kriging model for model updating. By introducing genetic algorithm (GA) and grouping strategy together with elite selection into standard particle optimization (PSO), the IPSO is obtained. Kriging metamodel serves for predicting the structural responses to avoid complex computation via finite element model. The combination of IPSO and kriging model shall provide more accurate searching results and obtain global optimal solution for model updating compared with the PSO, Simulate Annealing PSO (SimuAPSO), BreedPSO and PSOGA. A plane truss structure and ASCE Benchmark frame structure are adopted to verify the proposed approach. The results indicated that the hybrid of kriging model and IPSO could serve for model updating effectively and efficiently. The updating results further illustrated that IPSO can provide superior convergent solutions compared with PSO, SimuAPSO, BreedPSO and PSOGA.

개선된 PSO방법에 의한 학술연구조성사업 논문의 효과적인 분류 방법과 그 효과성에 관한 실증분석 (An Empirical Analysis Approach to Investigating Effectiveness of the PSO-based Clustering Method for Scholarly Papers Supported by the Research Grant Projects)

  • 이건창;서영욱;이대성
    • 지식경영연구
    • /
    • 제10권4호
    • /
    • pp.17-30
    • /
    • 2009
  • This study is concerned with suggesting a new clustering algorithm to evaluate the value of papers which were supported by research grants by Korea Research Fund (KRF). The algorithm is based on an extended version of a conventional PSO (Particle Swarm Optimization) mechanism. In other words, the proposed algorithm is based on integration of k-means algorithm and simulated annealing mechanism, named KASA-PSO. To evaluate the robustness of KASA-PSO, its clustering results are evaluated by research grants experts working at KRF. Empirical results revealed that the proposed KASA-PSO clustering method shows improved results than conventional clustering method.

  • PDF

Harmony search based, improved Particle Swarm Optimizer for minimum cost design of semi-rigid steel frames

  • Hadidi, Ali;Rafiee, Amin
    • Structural Engineering and Mechanics
    • /
    • 제50권3호
    • /
    • pp.323-347
    • /
    • 2014
  • This paper proposes a Particle Swarm Optimization (PSO) algorithm, which is improved by making use of the Harmony Search (HS) approach and called HS-PSO algorithm. A computer code is developed for optimal sizing design of non-linear steel frames with various semi-rigid and rigid beam-to-column connections based on the HS-PSO algorithm. The developed code selects suitable sections for beams and columns, from a standard set of steel sections such as American Institute of Steel Construction (AISC) wide-flange W-shapes, such that the minimum total cost, which comprises total member plus connection costs, is obtained. Stress and displacement constraints of AISC-LRFD code together with the size constraints are imposed on the frame in the optimal design procedure. The nonlinear moment-rotation behavior of connections is modeled using the Frye-Morris polynomial model. Moreover, the P-${\Delta}$ effects of beam-column members are taken into account in the non-linear structural analysis. Three benchmark design examples with several types of connections are presented and the results are compared with those of standard PSO and of other researches as well. The comparison shows that the proposed HS-PSO algorithm performs better both than the PSO and the Big Bang-Big Crunch (BB-BC) methods.

Voltage Stability Prediction on Power System Network via Enhanced Hybrid Particle Swarm Artificial Neural Network

  • Lim, Zi-Jie;Mustafa, Mohd Wazir;Jamian, Jasrul Jamani
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.877-887
    • /
    • 2015
  • Rapid development of cities with constant increasing load and deregulation in electricity market had forced the transmission lines to operate near their threshold capacity and can easily lead to voltage instability and caused system breakdown. To prevent such catastrophe from happening, accurate readings of voltage stability condition is required so that preventive equipment and operators can execute security procedures to restore system condition to normal. This paper introduced Enhanced Hybrid Particle Swarm Optimization algorithm to estimate the voltage stability condition which utilized Fast Voltage Stability Index (FVSI) to indicate how far or close is the power system network to the collapse point when the reactive load in the system increases because reactive load gives the highest impact to the stability of the system as it varies. Particle Swarm Optimization (PSO) had been combined with the ANN to form the Enhanced Hybrid PSO-ANN (EHPSO-ANN) algorithm that worked accurately as a prediction algorithm. The proposed algorithm reduced serious local minima convergence of ANN but also maintaining the fast convergence speed of PSO. The results show that the hybrid algorithm has greater prediction accuracy than those comparing algorithms. High generalization ability was found in the proposed algorithm.

Effective Task Scheduling and Dynamic Resource Optimization based on Heuristic Algorithms in Cloud Computing Environment

  • NZanywayingoma, Frederic;Yang, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권12호
    • /
    • pp.5780-5802
    • /
    • 2017
  • Cloud computing system consists of distributed resources in a dynamic and decentralized environment. Therefore, using cloud computing resources efficiently and getting the maximum profits are still challenging problems to the cloud service providers and cloud service users. It is important to provide the efficient scheduling. To schedule cloud resources, numerous heuristic algorithms such as Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Ant Colony Optimization (ACO), Cuckoo Search (CS) algorithms have been adopted. The paper proposes a Modified Particle Swarm Optimization (MPSO) algorithm to solve the above mentioned issues. We first formulate an optimization problem and propose a Modified PSO optimization technique. The performance of MPSO was evaluated against PSO, and GA. Our experimental results show that the proposed MPSO minimizes the task execution time, and maximizes the resource utilization rate.

Design of Solving Similarity Recognition for Cloth Products Based on Fuzzy Logic and Particle Swarm Optimization Algorithm

  • Chang, Bae-Muu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권10호
    • /
    • pp.4987-5005
    • /
    • 2017
  • This paper introduces a new method to solve Similarity Recognition for Cloth Products, which is based on Fuzzy logic and Particle swarm optimization algorithm. For convenience, it is called the SRCPFP method hereafter. In this paper, the SRCPFP method combines Fuzzy Logic (FL) and Particle Swarm Optimization (PSO) algorithm to solve similarity recognition for cloth products. First, it establishes three features, length, thickness, and temperature resistance, respectively, for each cloth product. Subsequently, these three features are engaged to construct a Fuzzy Inference System (FIS) which can find out the similarity between a query cloth and each sampling cloth in the cloth database D. At the same time, the FIS integrated with the PSO algorithm can effectively search for near optimal parameters of membership functions in eight fuzzy rules of the FIS for the above similarities. Finally, experimental results represent that the SRCPFP method can realize a satisfying recognition performance and outperform other well-known methods for similarity recognition under considerations here.