• Title/Summary/Keyword: particle simulations

Search Result 447, Processing Time 0.046 seconds

A Numerical Study on the Effect of Coefficient of Restitution to Heat Transfer in a Conical Fluidized Bed Combustor (원추형 유동층 연소기 내의 열전달에 미치는 복원계수의 영향에 대한 수치해석 연구)

  • Kang, Seung Mo;Park, Woe-Chul;Abdelmotalib, Hamada;Ko, Dong Kuk;Im, Ik-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.4
    • /
    • pp.38-44
    • /
    • 2015
  • In this paper, numerical simulations on conical fluidized bed combustors were carried out to estimate the effect of coefficients of restitution between particle and particle and particle to wall on hydrodynamics and heat transfer. The Eulerian-Eulerian two-fluid model was used to simulate the hydrodynamics and heat transfer in a conical fluidized bed combustor. The solid phase properties were calculated by applying the kinetic theory of granular flow. Simulations results show that increasing the restitution coefficient between the particle and particle results in increasing the bed pressure drop. On other hand, the increasing of particle to wall coefficient of restitution results in decreasing the bed pressure drop. It is found that the coefficient of restitution has little effect on heat transfer.

Preserving and Breakup for the Detailed Representation of Liquid Sheets in Particle-Based Fluid Simulations (입자 기반 유체 시뮬레이션에서 디테일한 액체 시트를 표현하기 위한 보존과 분해 기법)

  • Kim, Jong-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.1
    • /
    • pp.13-22
    • /
    • 2019
  • In this paper, we propose a new method to improve the details of the fluid surface by removing liquid sheets that are over-preserved in particle-based water simulation. A variety of anisotropic approaches have been proposed to address the surface noise problem, one of the chronic problems in particle-based fluid simulation. However, a method of stably expressing the preservation and breakup of the liquid sheet has not been proposed. We propose a new framework that can dynamically add and remove the water particles based on anisotropic kernel and density to simultaneously represent two features of liquid sheet preservation and breakup in particle-based fluid simulations. The proposed technique well represented the characteristics of a fluid sheet that was breakup by removing the excessively preserved liquid sheet in a particle-based fluid simulation approach. As a result, the quality of the liquid sheet was improved without noise.

Numerical simulation on LMR molten-core centralized sloshing benchmark experiment using multi-phase smoothed particle hydrodynamics

  • Jo, Young Beom;Park, So-Hyun;Park, Juryong;Kim, Eung Soo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.752-762
    • /
    • 2021
  • The Smoothed Particle Hydrodynamics is one of the most widely used mesh-free numerical method for thermo-fluid dynamics. Due to its Lagrangian nature and simplicity, it is recently gaining popularity in simulating complex physics with large deformations. In this study, the 3D single/two-phase numerical simulations are performed on the Liquid Metal Reactor (LMR) centralized sloshing benchmark experiment using the SPH parallelized using a GPU. In order to capture multi-phase flows with a large density ratio more effectively, the original SPH density and continuity equations are re-formulated in terms of the normalized-density. Based upon this approach, maximum sloshing height and arrival time in various experimental cases are calculated by using both single-phase and multi-phase SPH framework and the results are compared with the benchmark results. Overall, the results of SPH simulations show excellent agreement with all the benchmark experiments both in qualitative and quantitative manners. According to the sensitivity study of the particle-size, the prediction accuracy is gradually increasing with decreasing the particle-size leading to a higher resolution. In addition, it is found that the multi-phase SPH model considering both liquid and air provides a better prediction on the experimental results and the reality.

Tracing the trajectory of pelagic Sargassum using satellite monitoring and Lagrangian transport simulations in the East China Sea and Yellow Sea

  • Kwon, Kyungman;Choi, Byoung-Ju;Kim, Kwang Young;Kim, Keunyong
    • ALGAE
    • /
    • v.34 no.4
    • /
    • pp.315-326
    • /
    • 2019
  • Northeastward drifts of massive Sargassum patches were observed in the East China Sea (ECS) and Yellow Sea (YS) by the Geostationary Ocean Color Imager (GOCI) in May 2017. Coverage of the brown macroalgae patches was the largest ever recorded in the ECS and YS. Three-dimensional circulation modeling and Lagrangian particle tracking simulations were conducted to reproduce drifting trajectories of the macroalgae patches. The trajectories of the macroalgae patches were controlled by winds as well as surface currents. A windage (leeway) factor of 1% was chosen based on sensitivity simulations. Southerly winds in May 2017 contributed to farther northward intrusion of the brown macroalgae into the YS. Although satellite observation and numerical modeling have their own limitations and associated uncertainties, the two methods can be combined to find the best estimate of Sargassum patch trajectories. When satellites were unable to capture all patches because of clouds and sea fog in the ECS and YS, the Lagrangian particle tracking model helped to track and restore the missing patches in satellite images. This study suggests that satellite monitoring and numerical modeling are complementary to ensure accurate tracking of macroalgae patches in the ECS and YS.

Numerical Simulation of Two-dimensional Nonlinear Waves on Beaches Using a Smoothed Particle Hydrodynamics Method (SPH법을 이용한 해안에서의 2차원 비선형파 수치시뮬레이션)

  • Kim, Cheol-Ho;Lee, Young-Gill;Jeong, Kwang-Leol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.525-532
    • /
    • 2010
  • In this paper, wave breakers which occur in two dimensional coasts are simulated using a SPH(Smoothed Particle Hydrodynamics) method which represents the movement of fluidic physical volume with particles. As continuative fluid is approximated to the particles, the simulations are performed using fully Lagrangian method without any grid system. Two-dimensional Navier-Stokes equations and continuity equation are used for the numerical simulations. To generate incident waves, a piston type wavemaker is employed. The accuracy of the wave which is numerically generated by the wavemaker is verified by comparing with analytical results. The computations are carried out with various wave heights and slopes. The wave patterns generated through the numerical simulations are compared with several existing experimental and computational results. Agreement between the experimental data and the computation results is comparatively good. Also, the breaker depth index and the breaker height index from the present calculations are compared with the existing experimental results, and the tendency is very similar.

PARTICLE ACCELERATION IN SUPERNOVA REMNANTS

  • KANG, HYESUNG
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.545-548
    • /
    • 2015
  • Most high energy cosmic rays (CRs) are thought to be produced by diffusive shock acceleration (DSA) in supernova remnants (SNRs) within the Galaxy. Plasma and MHD simulations have shown that the self-excitation of MHD waves and amplification of magnetic fields via plasma instabilities are an integral part of DSA for strong collisionless shocks. In this study we explore how plasma processes such as plasma instabilities and wave-particle interactions can affect the energy spectra of CR protons and electrons, using time-dependent DSA simulations of SNR shocks. We demonstrate that the time-dependent evolution of the shock dynamics, the self-amplified magnetic fields and $Alfv{\acute{e}nic$ drift govern the highest energy end of the CR energy spectra. As a result, the spectral cutoffs in nonthermal X-ray and ${\gamma}$-ray radiation spectra are regulated by the evolution of the highest energy particles, which are injected at the early phase of SNRs. We also find that the maximum energy of CR protons can be boosted significantly only if the scale height of the magnetic field precursor is long enough to contain the diffusion lengths of the particles of interests. Thus, detailed understandings of nonlinear wave-particle interactions and time-dependent DSA simulations are crucial for understanding the nonthermal radiation from CR acceleration sources.

Quantitative Analysis of Random Errors of the WRF-FLEXPART Model for Backward-in-time Simulation over the Seoul Metropolitan Area (수도권 영역의 시간 후방 모드 WRF-FLEXPART 모의를 위한 입자 수에 따른 무작위 오차의 정량 분석)

  • Woo, Ju-Wan;Lee, Jae-Hyeong;Lee, Sang-Hyun
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.551-566
    • /
    • 2019
  • Quantitative understanding of a random error that is associated with Lagrangian particle dispersion modeling is a prerequisite for backward-in-time mode simulations. This study aims to quantify the random error of the WRF-FLEXPART model and suggest an optimum number of the Lagrangian particles for backward-in-time simulations over the Seoul metropolitan area. A series of backward-in-time simulations of the WRF-FLEXPART model has conducted at two receptor points by changing the number of Lagrangian particles and the relative error, as a quantitative indicator of random error, is analyzed to determine the optimum number of the release particles. The results show that in the Seoul metropolitan area a 1-day Lagrangian transport contributes 80~90% in residence time and ~100% in atmospheric enhancement of carbon monoxide. The relative errors in both the residence time and the atmospheric concentration enhancement are larger when the particles release in the daytime than in the nighttime, and in the inland area than in the coastal area. The sensitivity simulations reveal that the relative errors decrease with increasing the number of Lagrangian particles. The use of small number of Lagrangian particles caused significant random errors, which is attributed to the random number sampling process. For the particle number of 6000, the relative error in the atmospheric concentration enhancement is estimated as -6% ± 10% with reduction of computational time to 21% ± 7% on average. This study emphasizes the importance of quantitative analyses of the random errors in interpreting backward-in-time simulations of the WRF-FLEXPART model and in determining the number of Lagrangian particles as well.

Comparison between the Pair Fractions of Dark Matter Halos and Galaxies in Cosmological Simulations

  • An, Sung-Ho;Kim, Juhan;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.69.1-69.1
    • /
    • 2016
  • We investigate the pair fractions of dark matter halos and galaxies in cosmological simulations. The cosmological simulations are performed by a tree-particle-mesh code GOTPM (Grid-of-Oct-Tree-Particle-Mesh) and the dark matter halos are identified by a halo finding algorithm PSB (Physically Self-Bound). The 'galaxy' pair fractions are obtained from galaxy catalogues of L-Galaxies semi-analytical galaxy formation runs in the Millennium database. We present and compare the pair fractions of the dark matter halos and galaxies as functions of redshifts, halo masses and ambient environments.

  • PDF

A Comparative Study of k-ε Algebraic Stress Model and Mellor-Yamada Model Applied to Atmospheric Dispersion Simulation Using Lagrangian Particle Dispersion Model (라그랑지 입자 모델을 이용한 k-ε Algebraic Stress Model과 Mellor-Yamada Model의 비교 연구)

  • 김상백;오성남
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.1
    • /
    • pp.47-58
    • /
    • 2004
  • The $textsc{k}$-$\varepsilon$ algebraic stress model (KEASM) was applied to atmospheric dispersion simulation using the Lagrangian particle dispersion model and was compared with the most popular turbulence closure model in the field of atmospheric simulation, the Mellor-Yamada (MY) model. KEASM has been rarely applied to atmospheric simulation, but it includes the pressure redistribution effect of buoyancy due to heat and momentum fluxes. On the other hand, such effect is excluded from MY model. In the simulation study, the difference in the two turbulence models was reflected to both the turbulent velocity and the Lagrangian time scale. There was little difference in the vertical diffusion coefficient $\sigma$$_{z}$. However, the horizontal diffusion coefficient or calculated by KEASM was larger than that by MY model, coincided with the Pasquill-Gifford (PG) chart. The applicability of KEASM to atmospheric simulations was demonstrated by the simulations.s.

무요소 해석법에 의한 초탄성 재료의 변형에 관한 연구

  • 진석기;정동원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.732-735
    • /
    • 1995
  • A meshless method which is the new computational method being developed recently, is applied to the simulation of large deformation problems. Among the many types of meshless methods, the Reproducing Kernel particle method (RKPM) is used and the nearly incompressible hyperelastic materials are employed in simulations. The meshless methods can avoid metsh distortions and mesh entanglements that may frequently happen when the mesh-based methods like finite element method are used for the simulations of largely deformed materials. A general features of meshless methods are reviewed and the formulation of RKPM is presented. Next, the performance of explicit RKPM is demonstrated by examples.

  • PDF